Skip to main content

2014 | OriginalPaper | Buchkapitel

8. Multielectrode and Multitransistor Arrays for In Vivo Recording

verfasst von : Stefano Vassanelli

Erschienen in: Nanotechnology and Neuroscience: Nano-electronic, Photonic and Mechanical Neuronal Interfacing

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years the experimental toolkit at disposal of neuroscientists to investigate electrophysiologically the brain “in vivo” down to the level of neuronal microcircuits circuits and to elucidate their fundamental mechanisms for mapping and processing information has grown rapidly and even beyond expectations [1]. Driven by the compelling need of recording large numbers of neurons within the cortex and deeper structures, in a minimally invasive manner and over long time periods [2–4], the development of implantable brain probes based on microelectromechanical systems (MEMS) with arrays of microelectrodes has experienced a significant boost, leading to substantial optimization of pioneering approaches conceived in the 1970s [5] as well as to the development of novel technologies. Multielectrode arrays (MEAs) and multitransistor arrays (MTAs) integrated in silicon microchips constitute two major representatives from this class of brain implantable probes. Originally developed as “in vitro” prototypes for recording dissociated neurons or brain slices and other excitable cells [5–7], MEA and MTA reflect two different philosophies for transducing a neuronal electrical signal to a semiconductor chip, that is, either through a metal microelectrode or by means of an electrolyte–oxide–semiconductor field-effect transistor (EOSFET), a modified version of the metal–oxide–semiconductor field-effect transistor (MOSFET) that is widely used in integrated circuits [8] (Fig. 8.1).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The open-circuit potential (or zero-current potential or rest potential) is the potential measured when a high impedance voltmeter is placed across the cell. This potential is established at equilibrium when a pair of redox forms linked by a given half-reaction (i.e., a redox couple) is present at each electrode [23].
 
2
The term MTA, literally meant to indicate transistor arrays, in this context is used in a more general sense to indicate arrays of EOSFET and EOSC elements.
 
Literatur
1.
Zurück zum Zitat Buzsáki, G., Anastassiou, C.A., and Koch, C.: The origin of extracellular fields and currents-EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13(6), 407–420 (2012)CrossRef Buzsáki, G., Anastassiou, C.A., and Koch, C.: The origin of extracellular fields and currents-EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13(6), 407–420 (2012)CrossRef
2.
Zurück zum Zitat Nicolelis, M.A.L., and Lebedev, M.A.: Principles of neural ensemble physiology underlying the operation of brain-machine interfaces. Nat. Rev. Neurosci. 10(7), 530–540 (2009)CrossRef Nicolelis, M.A.L., and Lebedev, M.A.: Principles of neural ensemble physiology underlying the operation of brain-machine interfaces. Nat. Rev. Neurosci. 10(7), 530–540 (2009)CrossRef
3.
Zurück zum Zitat Lebedev, M.A., and Nicolelis, M.A.L.: Toward a whole-body neuroprosthetic. Prog. Brain Res. 194, 47–60 (2011)CrossRef Lebedev, M.A., and Nicolelis, M.A.L.: Toward a whole-body neuroprosthetic. Prog. Brain Res. 194, 47–60 (2011)CrossRef
4.
Zurück zum Zitat Buzsáki, G.: Large-scale recording of neuronal ensembles. Nat. Neurosci. 7(5), 446–451 (2004)CrossRef Buzsáki, G.: Large-scale recording of neuronal ensembles. Nat. Neurosci. 7(5), 446–451 (2004)CrossRef
5.
Zurück zum Zitat Pine, J.: A history of MEA development. In: Taketani, M., and Baudry, M. (eds.) Advances in Network Electrophysiology, pp. 3–23. Springer, New York, USA (2006)CrossRef Pine, J.: A history of MEA development. In: Taketani, M., and Baudry, M. (eds.) Advances in Network Electrophysiology, pp. 3–23. Springer, New York, USA (2006)CrossRef
6.
Zurück zum Zitat Fromherz, P.: Neuroelectronic Interfacing: Semiconductor Chips with Ion Channels, Nerve Cells, and Brain. Wiley-VHC, Weinheim (2003) Fromherz, P.: Neuroelectronic Interfacing: Semiconductor Chips with Ion Channels, Nerve Cells, and Brain. Wiley-VHC, Weinheim (2003)
7.
Zurück zum Zitat Fromherz, P.: Three levels of neuroelectronic interfacing. Ann. N. Y. Acad. Sci. 1093(1), 143–160 (2006)CrossRef Fromherz, P.: Three levels of neuroelectronic interfacing. Ann. N. Y. Acad. Sci. 1093(1), 143–160 (2006)CrossRef
8.
Zurück zum Zitat Nicollian, E.H., and Brews, J.R.: MOS (Metal Oxide Semiconductor) Physics and Technology. Wiley and Sons, New York (2003) Nicollian, E.H., and Brews, J.R.: MOS (Metal Oxide Semiconductor) Physics and Technology. Wiley and Sons, New York (2003)
9.
Zurück zum Zitat Vassanelli, S., and Fromherz, P.: Transistor probes local potassium conductances in the adhesion region of cultured rat hippocampal neurons. J. Neurosci. 19(16), 6767–6773 (1999) Vassanelli, S., and Fromherz, P.: Transistor probes local potassium conductances in the adhesion region of cultured rat hippocampal neurons. J. Neurosci. 19(16), 6767–6773 (1999)
10.
Zurück zum Zitat Kelly, R.C., Smith, M.A., Samonds, J.M., Kohn, A., Bonds, A.B., Movshon, J.A., and Lee, T.S.: Comparison of recordings from microelectrode arrays and single electrodes in the visual cortex. J. Neurosci. 27(2), 261–264 (2007)CrossRef Kelly, R.C., Smith, M.A., Samonds, J.M., Kohn, A., Bonds, A.B., Movshon, J.A., and Lee, T.S.: Comparison of recordings from microelectrode arrays and single electrodes in the visual cortex. J. Neurosci. 27(2), 261–264 (2007)CrossRef
11.
Zurück zum Zitat Jog, M.S., Connolly, C.I., Kubota, Y., Iyengar, D.R., Garrido, L., Harlan, R., and Graybiel, A.M.: Tetrode technology: advances in implantable hardware, neuroimaging, and data analysis techniques. J. Neurosci. Methods 117(2), 141–152 (2002)CrossRef Jog, M.S., Connolly, C.I., Kubota, Y., Iyengar, D.R., Garrido, L., Harlan, R., and Graybiel, A.M.: Tetrode technology: advances in implantable hardware, neuroimaging, and data analysis techniques. J. Neurosci. Methods 117(2), 141–152 (2002)CrossRef
12.
Zurück zum Zitat Felderer, F., and Fromherz, P.: Transistor needle chip for recording in brain tissue. Appl. Phys. 104(1), 1–6 (2011)CrossRef Felderer, F., and Fromherz, P.: Transistor needle chip for recording in brain tissue. Appl. Phys. 104(1), 1–6 (2011)CrossRef
13.
Zurück zum Zitat Fee, M.S., Mitra, P.P., and Kleinfeld, D.: Variability of extracellular spike waveforms of cortical neurons. J. Neurophysiol. 76(6), 3823–3833 (1996) Fee, M.S., Mitra, P.P., and Kleinfeld, D.: Variability of extracellular spike waveforms of cortical neurons. J. Neurophysiol. 76(6), 3823–3833 (1996)
14.
Zurück zum Zitat Gold, C., et al.: On the origin of the extracellular action potential waveform: a modeling study. J. Neurophysiol. 95(5), 3113–3128 (2006)CrossRef Gold, C., et al.: On the origin of the extracellular action potential waveform: a modeling study. J. Neurophysiol. 95(5), 3113–3128 (2006)CrossRef
15.
Zurück zum Zitat Diwakar, S., Lombardo, P., Solinas, S., Naldi, G., and D’Angelo, E.: Local field potential modeling predicts dense activation in cerebellar granule cells clusters under LTP and LTD control. PLoS One 6(7), e21928 (2011)CrossRef Diwakar, S., Lombardo, P., Solinas, S., Naldi, G., and D’Angelo, E.: Local field potential modeling predicts dense activation in cerebellar granule cells clusters under LTP and LTD control. PLoS One 6(7), e21928 (2011)CrossRef
16.
Zurück zum Zitat Pettersen, K.H., Lindén, H., Dale, A.M., and Einevoll, G.T.: Extracellular spikes and current-source density. In: Brette, R., and Destexhe, A. (eds.) Handbook of Neural Activity Measurement. Cambridge University Press, Cambridge (2012) Pettersen, K.H., Lindén, H., Dale, A.M., and Einevoll, G.T.: Extracellular spikes and current-source density. In: Brette, R., and Destexhe, A. (eds.) Handbook of Neural Activity Measurement. Cambridge University Press, Cambridge (2012)
17.
Zurück zum Zitat Hanson, T., Fitzsimmons, N., and O’Doherty, J.E.: Technology for multielectrode microstimulation of brain tissue. In: Nicolelis, M.A.L. (ed.) Methods for Neural Ensemble Recordings, 2nd ed. CRC Press, Boca Raton, FL (2008) Hanson, T., Fitzsimmons, N., and O’Doherty, J.E.: Technology for multielectrode microstimulation of brain tissue. In: Nicolelis, M.A.L. (ed.) Methods for Neural Ensemble Recordings, 2nd ed. CRC Press, Boca Raton, FL (2008)
18.
Zurück zum Zitat O’Doherty, J.E., Lebedev, M.A., Ifft, P.J., Zhuang, K.Z., Shokur, S., Bleuler, H., and Nicolelis, M.A.L.: Active tactile exploration using a brain-machine-brain interface. Nature 479(7372), 228–231 (2011)CrossRef O’Doherty, J.E., Lebedev, M.A., Ifft, P.J., Zhuang, K.Z., Shokur, S., Bleuler, H., and Nicolelis, M.A.L.: Active tactile exploration using a brain-machine-brain interface. Nature 479(7372), 228–231 (2011)CrossRef
19.
Zurück zum Zitat Gaylor, J.M., Raman, G., Chung, M., Lee, J., M. Rao, J. Lau, and D. S. Poe, “Cochlear implantation in adults: a systematic review and meta-analysis,” JAMA Otolaryngol.– Head Neck Surg., 139(3), 265–272 (2013)CrossRef Gaylor, J.M., Raman, G., Chung, M., Lee, J., M. Rao, J. Lau, and D. S. Poe, “Cochlear implantation in adults: a systematic review and meta-analysis,” JAMA Otolaryngol.– Head Neck Surg., 139(3), 265–272 (2013)CrossRef
20.
Zurück zum Zitat Wilson, B. S., and Dorman, M. F.: Cochlear implants: a remarkable past and a brilliant future. Hear. Res. 242(1–2), 3–21 (2008)CrossRef Wilson, B. S., and Dorman, M. F.: Cochlear implants: a remarkable past and a brilliant future. Hear. Res. 242(1–2), 3–21 (2008)CrossRef
21.
Zurück zum Zitat Chader, G.J., Weiland, J., and Humayun, M.S.: Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis. In: Verhaagen, J.M.H., et al. (eds.) Progress in Brain Research, vol. 175, pp. 317–332. Elsevier, Amsterdam (2009) Chader, G.J., Weiland, J., and Humayun, M.S.: Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis. In: Verhaagen, J.M.H., et al. (eds.) Progress in Brain Research, vol. 175, pp. 317–332. Elsevier, Amsterdam (2009)
22.
Zurück zum Zitat Schoen, I., and Fromherz, P.: Extracellular stimulation of mammalian neurons through repetitive activation of Na + channels by weak capacitive currents on a silicon chip. J. Neurophysiol. 100(1), 346–357 (2008)CrossRef Schoen, I., and Fromherz, P.: Extracellular stimulation of mammalian neurons through repetitive activation of Na + channels by weak capacitive currents on a silicon chip. J. Neurophysiol. 100(1), 346–357 (2008)CrossRef
23.
Zurück zum Zitat Bard, A.J., and Faulkner, L.R.: Electrochemical Methods: Fundamentals and Applications. Wiley, New York (2001) Bard, A.J., and Faulkner, L.R.: Electrochemical Methods: Fundamentals and Applications. Wiley, New York (2001)
24.
Zurück zum Zitat Fromherz, P.: Threshold voltage of the EOSFET: reference electrode and oxide-electrolyte interface. Phys. Status Solidi 209(6), 1157–1162 (2012)CrossRef Fromherz, P.: Threshold voltage of the EOSFET: reference electrode and oxide-electrolyte interface. Phys. Status Solidi 209(6), 1157–1162 (2012)CrossRef
25.
Zurück zum Zitat Merrill, D.R., Bikson, M., and Jefferys, J.G.R.: Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods 141(2), 171–198 (2005)CrossRef Merrill, D.R., Bikson, M., and Jefferys, J.G.R.: Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods 141(2), 171–198 (2005)CrossRef
26.
Zurück zum Zitat Mayer, S., Geddes, L.A., Bourland, J.D., and Ogborn, L.: Faradic resistance of the electrode/electrolyte interface. Med. Biol. Eng. Comput. 30(5), 538–542 (1992)CrossRef Mayer, S., Geddes, L.A., Bourland, J.D., and Ogborn, L.: Faradic resistance of the electrode/electrolyte interface. Med. Biol. Eng. Comput. 30(5), 538–542 (1992)CrossRef
27.
Zurück zum Zitat Wei, X.F., and Grill, W.M.: Impedance characteristics of deep brain stimulation electrodes in vitro and in vivo. J. Neural Eng. 6(4), 046008 (2009)CrossRef Wei, X.F., and Grill, W.M.: Impedance characteristics of deep brain stimulation electrodes in vitro and in vivo. J. Neural Eng. 6(4), 046008 (2009)CrossRef
28.
Zurück zum Zitat Kipke, D.R., Shain, W., Buzsáki, G., Fetz, E., Henderson, J.M., Hetke, J.F., and Schalk, G.: Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J. Neurosci. 28(46), 11830–11838 (2008)CrossRef Kipke, D.R., Shain, W., Buzsáki, G., Fetz, E., Henderson, J.M., Hetke, J.F., and Schalk, G.: Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J. Neurosci. 28(46), 11830–11838 (2008)CrossRef
29.
Zurück zum Zitat Carmena, J.M., Lebedev, M.A., Crist, R.E., O’Doherty, J.E., Santucci, D.M., Dimitrov, D.F., Patil, P.G., Henriquez, C.S., and Nicolelis, M.A.L.: Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol. 1(2), e2 (2003)CrossRef Carmena, J.M., Lebedev, M.A., Crist, R.E., O’Doherty, J.E., Santucci, D.M., Dimitrov, D.F., Patil, P.G., Henriquez, C.S., and Nicolelis, M.A.L.: Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol. 1(2), e2 (2003)CrossRef
30.
Zurück zum Zitat Hochberg, L.R., Serruya, M.D., Friehs, G.M., Mukand, J.A., Saleh, M., Caplan, A.H., Branner, A., Chen, D., Penn, R.D., and Donoghue, J.P.: Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099), 164–171 (2006)CrossRef Hochberg, L.R., Serruya, M.D., Friehs, G.M., Mukand, J.A., Saleh, M., Caplan, A.H., Branner, A., Chen, D., Penn, R.D., and Donoghue, J.P.: Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099), 164–171 (2006)CrossRef
31.
Zurück zum Zitat Lebedev, M.A., and Nicolelis, M.A.L.: Brain-machine interfaces: past, present and future. Trends Neurosci. 29(9), 536–546 (2006)CrossRef Lebedev, M.A., and Nicolelis, M.A.L.: Brain-machine interfaces: past, present and future. Trends Neurosci. 29(9), 536–546 (2006)CrossRef
32.
Zurück zum Zitat McCreery, D., Lossinsky, A., Pikov, V., and Liu, X.: Microelectrode array for chronic deep-brain microstimulation and recording. IEEE Trans. Biomed. Eng. 53(4), 726–737 (2006)CrossRef McCreery, D., Lossinsky, A., Pikov, V., and Liu, X.: Microelectrode array for chronic deep-brain microstimulation and recording. IEEE Trans. Biomed. Eng. 53(4), 726–737 (2006)CrossRef
33.
Zurück zum Zitat Lindén, H., Tetzlaff, T., Potjans, T.C., Pettersen, K.H., Grün, S., Diesmann, M., and Einevoll, G.T.: Modeling the spatial reach of the LFP. Neuron 72(5), 859–872 (2011)CrossRef Lindén, H., Tetzlaff, T., Potjans, T.C., Pettersen, K.H., Grün, S., Diesmann, M., and Einevoll, G.T.: Modeling the spatial reach of the LFP. Neuron 72(5), 859–872 (2011)CrossRef
34.
Zurück zum Zitat Kajikawa, Y., and Schroeder, C.E.: How local is the local field potential? Neuron 72(5), 847–858 (2011)CrossRef Kajikawa, Y., and Schroeder, C.E.: How local is the local field potential? Neuron 72(5), 847–858 (2011)CrossRef
35.
Zurück zum Zitat Lindén, H., Pettersen, K.H., and Einevoll, G.T.: Intrinsic dendritic filtering gives low-pass power spectra of local field potentials. J. Comput. Neurosci. 29(3), 423–444 (2010)CrossRef Lindén, H., Pettersen, K.H., and Einevoll, G.T.: Intrinsic dendritic filtering gives low-pass power spectra of local field potentials. J. Comput. Neurosci. 29(3), 423–444 (2010)CrossRef
36.
Zurück zum Zitat Cogan, S.F.: Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10(1), 275–309 (2008)CrossRef Cogan, S.F.: Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10(1), 275–309 (2008)CrossRef
37.
Zurück zum Zitat Moxon, K.A., Hallman, S., Sundarakrishnan, A., Wheatley, M., Nissanov, J., and Barbee, K.A.: Long-term recordings of multiple, single-neurons for clinical applications: the emerging role of the bioactive microelectrode. Materials 2(4), 1762–1794 (2009)CrossRef Moxon, K.A., Hallman, S., Sundarakrishnan, A., Wheatley, M., Nissanov, J., and Barbee, K.A.: Long-term recordings of multiple, single-neurons for clinical applications: the emerging role of the bioactive microelectrode. Materials 2(4), 1762–1794 (2009)CrossRef
38.
Zurück zum Zitat Polikov, V.S., Tresco, P.A., and Reichert, W.M.: Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 148(1), 1–18 (2005)CrossRef Polikov, V.S., Tresco, P.A., and Reichert, W.M.: Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 148(1), 1–18 (2005)CrossRef
39.
Zurück zum Zitat Suner, S., Fellows, M.R., Vargas-Irwin, C., Nakata, G.K., and Donoghue, J.P.: Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex. IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 13(4), 524–541 (2005)CrossRef Suner, S., Fellows, M.R., Vargas-Irwin, C., Nakata, G.K., and Donoghue, J.P.: Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex. IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 13(4), 524–541 (2005)CrossRef
40.
Zurück zum Zitat Hatsopoulos, N.: Decoding continuous and discrete motor behaviors using motor and premotor cortical ensembles. J. Neurophysiol. 92(2), 1165–1174 (2004)CrossRef Hatsopoulos, N.: Decoding continuous and discrete motor behaviors using motor and premotor cortical ensembles. J. Neurophysiol. 92(2), 1165–1174 (2004)CrossRef
41.
Zurück zum Zitat Supèr, H., and Roelfsema, P.R.: Chronic multiunit recordings in behaving animals: advantages and limitations. Prog. Brain Res. 147, 263–282 (2005)CrossRef Supèr, H., and Roelfsema, P.R.: Chronic multiunit recordings in behaving animals: advantages and limitations. Prog. Brain Res. 147, 263–282 (2005)CrossRef
42.
Zurück zum Zitat Robblee, L.S., Lefko, J.L. and Brummer, S.B.: Activated Ir: an electrode suitable for reversible charge injection in saline solution. J. Electrochem. Soc. 130(3), 731–733 (1983)CrossRef Robblee, L.S., Lefko, J.L. and Brummer, S.B.: Activated Ir: an electrode suitable for reversible charge injection in saline solution. J. Electrochem. Soc. 130(3), 731–733 (1983)CrossRef
43.
Zurück zum Zitat Mozota, J., and Conway, B.E.: Surface and bulk processes at oxidized iridium electrodes—I. Monolayer stage and transition to reversible multilayer oxide film behaviour. Electrochimica Acta. 28(1), 1–8 (1983)CrossRef Mozota, J., and Conway, B.E.: Surface and bulk processes at oxidized iridium electrodes—I. Monolayer stage and transition to reversible multilayer oxide film behaviour. Electrochimica Acta. 28(1), 1–8 (1983)CrossRef
44.
Zurück zum Zitat Schmidt, E.M., Bak, M.J., Hambrecht, F.T., Kufta, C.V., O’Rourke, D.K., and Vallabhanath, P.: Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain J. Neurol. 119(2), 507–522, 1996CrossRef Schmidt, E.M., Bak, M.J., Hambrecht, F.T., Kufta, C.V., O’Rourke, D.K., and Vallabhanath, P.: Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain J. Neurol. 119(2), 507–522, 1996CrossRef
45.
Zurück zum Zitat Rose, T.L., Kelliher, E.M., and Robblee, L.S.: Assessment of capacitor electrodes for intracortical neural stimulation. J. Neurosci. Methods 12(3), 181–193 (1985)CrossRef Rose, T.L., Kelliher, E.M., and Robblee, L.S.: Assessment of capacitor electrodes for intracortical neural stimulation. J. Neurosci. Methods 12(3), 181–193 (1985)CrossRef
46.
Zurück zum Zitat Cheung, K.C.: Implantable microscale neural interfaces. Biomed. Microdevices 9(6), 923–938, (2007)CrossRef Cheung, K.C.: Implantable microscale neural interfaces. Biomed. Microdevices 9(6), 923–938, (2007)CrossRef
47.
Zurück zum Zitat Zhou, D.D., and Greenbaum, E.S.: Implantable neural prostheses 1: devices and applications. Springer, Berlin (2009) Zhou, D.D., and Greenbaum, E.S.: Implantable neural prostheses 1: devices and applications. Springer, Berlin (2009)
48.
Zurück zum Zitat HajjHassan, M., Chodavarapu, V., and Musallam, S.: NeuroMEMS: neural probe microtechnologies. Sensors 8(10), 6704–6726 (2008)CrossRef HajjHassan, M., Chodavarapu, V., and Musallam, S.: NeuroMEMS: neural probe microtechnologies. Sensors 8(10), 6704–6726 (2008)CrossRef
49.
Zurück zum Zitat Wise, K.D., Sodagar, A.M., Ying Yao, Gulari, M.N., Perlin, G.E., and Najafi, K.: Microelectrodes, microelectronics, and implantable neural microsystems. Proc. IEEE 96(7), 1184–1202 (2008)CrossRef Wise, K.D., Sodagar, A.M., Ying Yao, Gulari, M.N., Perlin, G.E., and Najafi, K.: Microelectrodes, microelectronics, and implantable neural microsystems. Proc. IEEE 96(7), 1184–1202 (2008)CrossRef
50.
Zurück zum Zitat Tian, B., Liu, J., Dvir, T., Jin, L., Tsui, J.H., Qing, Q., Suo, Z., Langer, R., Kohane, D.S., and Lieber, C.M.: Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 11(11), 986–994 (2012)CrossRef Tian, B., Liu, J., Dvir, T., Jin, L., Tsui, J.H., Qing, Q., Suo, Z., Langer, R., Kohane, D.S., and Lieber, C.M.: Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 11(11), 986–994 (2012)CrossRef
51.
Zurück zum Zitat Keefer, E.W., Botterman, B.R., Romero, M.I., Rossi, A.F., and Gross, G.W.: Carbon nanotube coating improves neuronal recordings. Nat. Nanotechnol. 3(7), 434–439 (2008)CrossRef Keefer, E.W., Botterman, B.R., Romero, M.I., Rossi, A.F., and Gross, G.W.: Carbon nanotube coating improves neuronal recordings. Nat. Nanotechnol. 3(7), 434–439 (2008)CrossRef
52.
Zurück zum Zitat Ballerini, L., Prato, M., Giugliano, M., Gambazzi, L., Mazzatenta, A., Businaro, L., Markram, H., and Campidelli, S.: Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits. J. Neurosci. 27(26), 6931–6936 (2007)CrossRef Ballerini, L., Prato, M., Giugliano, M., Gambazzi, L., Mazzatenta, A., Businaro, L., Markram, H., and Campidelli, S.: Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits. J. Neurosci. 27(26), 6931–6936 (2007)CrossRef
53.
Zurück zum Zitat Ciofani, G., Raffa, V., Vittorio, O., Cuschieri, A., Pizzorusso, T., Costa, M., and Bardi, G.: In vitro and in vivo biocompatibility testing of functionalized carbon nanotubes. In: Balasubramanian, K., and Burghard, M. (eds.) Carbon Nanotubes, pp. 67–83. Humana Press, Totowa (2010)CrossRef Ciofani, G., Raffa, V., Vittorio, O., Cuschieri, A., Pizzorusso, T., Costa, M., and Bardi, G.: In vitro and in vivo biocompatibility testing of functionalized carbon nanotubes. In: Balasubramanian, K., and Burghard, M. (eds.) Carbon Nanotubes, pp. 67–83. Humana Press, Totowa (2010)CrossRef
54.
Zurück zum Zitat Bareket-Keren, L., and Hanein, Y.: Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects. Front. Neural Circuits 6, 122 (2013)CrossRef Bareket-Keren, L., and Hanein, Y.: Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects. Front. Neural Circuits 6, 122 (2013)CrossRef
55.
Zurück zum Zitat Ghezzi, D., Antognazza, M.R., Dal Maschio, M., Lanzarini, E., Benfenati, F., and Lanzani, G.: A hybrid bioorganic interface for neuronal photoactivation. Nat. Commun. 2, 166 (2011)CrossRef Ghezzi, D., Antognazza, M.R., Dal Maschio, M., Lanzarini, E., Benfenati, F., and Lanzani, G.: A hybrid bioorganic interface for neuronal photoactivation. Nat. Commun. 2, 166 (2011)CrossRef
56.
Zurück zum Zitat Benfenati, V., Toffanin, S., Bonetti, S., Turatti, G. Pistone, A., Chiappalone, M., Sagnella, A., Stefani, A., Generali, G., Ruani, G., Saguatti, D., Zamboni, R., and Muccini, M.: A transparent organic transistor structure for bidirectional stimulation and recording of primary neurons. Nat. Mater. 12(7), 672–680 (2013)CrossRef Benfenati, V., Toffanin, S., Bonetti, S., Turatti, G. Pistone, A., Chiappalone, M., Sagnella, A., Stefani, A., Generali, G., Ruani, G., Saguatti, D., Zamboni, R., and Muccini, M.: A transparent organic transistor structure for bidirectional stimulation and recording of primary neurons. Nat. Mater. 12(7), 672–680 (2013)CrossRef
57.
Zurück zum Zitat Wise, K.D., Angell, J.B., and Starr, A.: An integrated-circuit approach to extracellular microelectrodes. IEEE Trans. Biomed. Eng. BME-17(3), 238–247 (1970)CrossRef Wise, K.D., Angell, J.B., and Starr, A.: An integrated-circuit approach to extracellular microelectrodes. IEEE Trans. Biomed. Eng. BME-17(3), 238–247 (1970)CrossRef
58.
Zurück zum Zitat Wise, K., and Angell, J.: A microprobe with integrated amplifiers for neurophysiology. In: Solid-State Circuits Conference. Digest of Technical Papers. 1971 IEEE International, vol. XIV, pp. 100–101 (1971) Wise, K., and Angell, J.: A microprobe with integrated amplifiers for neurophysiology. In: Solid-State Circuits Conference. Digest of Technical Papers. 1971 IEEE International, vol. XIV, pp. 100–101 (1971)
59.
Zurück zum Zitat Wise, K.D., and Angell, J.B.: A low-capacitance multielectrode probe for use in extracellular neurophysiology. IEEE Trans. Biomed. Eng. BME-22(3), 212–219 (1975)CrossRef Wise, K.D., and Angell, J.B.: A low-capacitance multielectrode probe for use in extracellular neurophysiology. IEEE Trans. Biomed. Eng. BME-22(3), 212–219 (1975)CrossRef
60.
Zurück zum Zitat Drake, K.L., Wise, K.D., Farraye, J., Anderson, D.J., and BeMent, S.L.: Performance of planar multisite microprobes in recording extracellular single-unit intracortical activity. IEEE Trans. Biomed. Eng. 35(9), 719–732 (1988)CrossRef Drake, K.L., Wise, K.D., Farraye, J., Anderson, D.J., and BeMent, S.L.: Performance of planar multisite microprobes in recording extracellular single-unit intracortical activity. IEEE Trans. Biomed. Eng. 35(9), 719–732 (1988)CrossRef
61.
Zurück zum Zitat Najafi, K., Wise, K.D., and Mochizuki, T.: A high-yield IC-compatible multichannel recording array. IEEE Trans. Electron Devices 32(7), 1206–1211 (1985)CrossRef Najafi, K., Wise, K.D., and Mochizuki, T.: A high-yield IC-compatible multichannel recording array. IEEE Trans. Electron Devices 32(7), 1206–1211 (1985)CrossRef
62.
Zurück zum Zitat Wise, K.D., Anderson, D.J., Hetke, J.F., Kipke, D.R., and Najafi, K.: Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proc. IEEE 92(1), 76–97 (2004)CrossRef Wise, K.D., Anderson, D.J., Hetke, J.F., Kipke, D.R., and Najafi, K.: Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proc. IEEE 92(1), 76–97 (2004)CrossRef
63.
Zurück zum Zitat Bai, Q., and Wise, K.D.: Single-unit neural recording with active microelectrode arrays. IEEE Trans. Biomed. Eng. 48(8), 911–920 (2001)CrossRef Bai, Q., and Wise, K.D.: Single-unit neural recording with active microelectrode arrays. IEEE Trans. Biomed. Eng. 48(8), 911–920 (2001)CrossRef
64.
Zurück zum Zitat Beebe, X., and Rose, T.L.: Charge injection limits of activated iridium oxide electrodes with 0.2 ms pulses in bicarbonate buffered saline (neurological stimulation application). IEEE Trans. Biomed. Eng. 35(6), 494–495 (1988)CrossRef Beebe, X., and Rose, T.L.: Charge injection limits of activated iridium oxide electrodes with 0.2 ms pulses in bicarbonate buffered saline (neurological stimulation application). IEEE Trans. Biomed. Eng. 35(6), 494–495 (1988)CrossRef
65.
Zurück zum Zitat Weiland, J.D., and Anderson, D.J.: Chronic neural stimulation with thin-film, iridium oxide electrodes. IEEE Trans. Biomed. Eng. 47(7), 911–918 (2000)CrossRef Weiland, J.D., and Anderson, D.J.: Chronic neural stimulation with thin-film, iridium oxide electrodes. IEEE Trans. Biomed. Eng. 47(7), 911–918 (2000)CrossRef
66.
Zurück zum Zitat Weiland, J.D., Anderson, D.J., and Humayun, M.S.: In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes. IEEE Trans. Biomed. Eng. 49(12), 1574–1579 (2002)CrossRef Weiland, J.D., Anderson, D.J., and Humayun, M.S.: In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes. IEEE Trans. Biomed. Eng. 49(12), 1574–1579 (2002)CrossRef
67.
Zurück zum Zitat Najafi, K., Ji, J., and Wise, K.D.: Scaling limitations of silicon multichannel recording probes. IEEE Trans. Biomed. Eng. 37(1), 1–11 (1990)CrossRef Najafi, K., Ji, J., and Wise, K.D.: Scaling limitations of silicon multichannel recording probes. IEEE Trans. Biomed. Eng. 37(1), 1–11 (1990)CrossRef
68.
Zurück zum Zitat Jones, K.E., Campbell, P.K., and Normann, R.A.: A glass/silicon composite intracortical electrode array. Ann. Biomed. Eng. 20(4), 423–437 (1992)CrossRef Jones, K.E., Campbell, P.K., and Normann, R.A.: A glass/silicon composite intracortical electrode array. Ann. Biomed. Eng. 20(4), 423–437 (1992)CrossRef
69.
Zurück zum Zitat Yoo, J.-M., Negi, S., Tathireddy, P., Solzbacher, F., Song, J.-I., and Rieth, L.W.: Excimer laser deinsulation of Parylene-C on iridium for use in an activated iridium oxide film-coated Utah electrode array. J. Neurosci. Methods 215(1), 78–87 (2013)CrossRef Yoo, J.-M., Negi, S., Tathireddy, P., Solzbacher, F., Song, J.-I., and Rieth, L.W.: Excimer laser deinsulation of Parylene-C on iridium for use in an activated iridium oxide film-coated Utah electrode array. J. Neurosci. Methods 215(1), 78–87 (2013)CrossRef
70.
Zurück zum Zitat Rousche, P.J., and Normann, R.A.: Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex. J. Neurosci. Methods 82(1), 1–15 (1998)CrossRef Rousche, P.J., and Normann, R.A.: Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex. J. Neurosci. Methods 82(1), 1–15 (1998)CrossRef
71.
Zurück zum Zitat Rousche, P.J., and Normann, R.A.: Chronic intracortical microstimulation (ICMS) of cat sensory cortex using the Utah Intracortical Electrode Array. IEEE Trans. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 7(1), 56–68 (1999)CrossRef Rousche, P.J., and Normann, R.A.: Chronic intracortical microstimulation (ICMS) of cat sensory cortex using the Utah Intracortical Electrode Array. IEEE Trans. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 7(1), 56–68 (1999)CrossRef
72.
Zurück zum Zitat Badi, A.N., Kertesz, T.R., Gurgel, R.K., Shelton, C., and Normann, R.A.: Development of a novel eighth-nerve intraneural auditory neuroprosthesis. The Laryngoscope 113(5), 833–842 (2003)CrossRef Badi, A.N., Kertesz, T.R., Gurgel, R.K., Shelton, C., and Normann, R.A.: Development of a novel eighth-nerve intraneural auditory neuroprosthesis. The Laryngoscope 113(5), 833–842 (2003)CrossRef
73.
Zurück zum Zitat Clark, G.A., Ledbetter, N.M., Warren, D.J., and Harrison, R.R.: Recording sensory and motor information from peripheral nerves with Utah Slanted Electrode Arrays. Paper presented at 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp. 4641–4644, 30 August–3 September 2011 Clark, G.A., Ledbetter, N.M., Warren, D.J., and Harrison, R.R.: Recording sensory and motor information from peripheral nerves with Utah Slanted Electrode Arrays. Paper presented at 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp. 4641–4644, 30 August–3 September 2011
74.
Zurück zum Zitat Rousche, P.J., and Normann, R.A.: A method for pneumatically inserting an array of penetrating electrodes into cortical tissue. Ann. Biomed. Eng. 20(4), 413–422 (1992)CrossRef Rousche, P.J., and Normann, R.A.: A method for pneumatically inserting an array of penetrating electrodes into cortical tissue. Ann. Biomed. Eng. 20(4), 413–422 (1992)CrossRef
75.
Zurück zum Zitat Bergveld, P.: Thirty years of ISFETOLOGY: what happened in the past 30 years and what may happen in the next 30 years. Sensors Actuators B Chem. 88(1), 1–20 (2003)CrossRef Bergveld, P.: Thirty years of ISFETOLOGY: what happened in the past 30 years and what may happen in the next 30 years. Sensors Actuators B Chem. 88(1), 1–20 (2003)CrossRef
76.
Zurück zum Zitat Bergveld, P.: Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. IEEE Trans. Biomed. Eng. BME-19(5), 342–351 (1972)CrossRef Bergveld, P.: Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. IEEE Trans. Biomed. Eng. BME-19(5), 342–351 (1972)CrossRef
77.
Zurück zum Zitat Fromherz, P., Offenhausser, A., Vetter, T., and Weis, J.: A neuron-silicon junction: a Retzius cell of the leech on an insulated-gate field-effect transistor. Science 252(5010), 1290–1293 (1991)CrossRef Fromherz, P., Offenhausser, A., Vetter, T., and Weis, J.: A neuron-silicon junction: a Retzius cell of the leech on an insulated-gate field-effect transistor. Science 252(5010), 1290–1293 (1991)CrossRef
78.
Zurück zum Zitat Vassanelli, S., and Fromherz, P.: Transistor records of excitable neurons from rat brain. Appl. Phys. 66(4), 459–463 (1998)CrossRef Vassanelli, S., and Fromherz, P.: Transistor records of excitable neurons from rat brain. Appl. Phys. 66(4), 459–463 (1998)CrossRef
79.
Zurück zum Zitat Voelker, M., and Fromherz, P.: Signal transmission from individual mammalian nerve cell to field-effect transistor. Small 1(2), 206–210 (2005)CrossRef Voelker, M., and Fromherz, P.: Signal transmission from individual mammalian nerve cell to field-effect transistor. Small 1(2), 206–210 (2005)CrossRef
80.
Zurück zum Zitat Besl, B., and Fromherz, P.: Transistor array with an organotypic brain slice: field potential records and synaptic currents. Eur. J. Neurosci. 15(6), 999–1005 (2002)CrossRef Besl, B., and Fromherz, P.: Transistor array with an organotypic brain slice: field potential records and synaptic currents. Eur. J. Neurosci. 15(6), 999–1005 (2002)CrossRef
81.
Zurück zum Zitat Hutzler, M., and Fromherz, P.: Silicon chip with capacitors and transistors for interfacing organotypic brain slice of rat hippocampus. Eur. J. Neurosci. 19(8), 2231–2238 (2004)CrossRef Hutzler, M., and Fromherz, P.: Silicon chip with capacitors and transistors for interfacing organotypic brain slice of rat hippocampus. Eur. J. Neurosci. 19(8), 2231–2238 (2004)CrossRef
82.
Zurück zum Zitat Hutzler, M.: High-resolution multitransistor array recording of electrical field potentials in cultured brain slices. J. Neurophysiol. 96(3), 1638–1645 (2006)CrossRef Hutzler, M.: High-resolution multitransistor array recording of electrical field potentials in cultured brain slices. J. Neurophysiol. 96(3), 1638–1645 (2006)CrossRef
83.
Zurück zum Zitat Schoen, I., and Fromherz, P.: The mechanism of extracellular stimulation of nerve cells on an electrolyte-oxide-semiconductor capacitor. Biophys. J. 92(3), 1096–1111 (2007)CrossRef Schoen, I., and Fromherz, P.: The mechanism of extracellular stimulation of nerve cells on an electrolyte-oxide-semiconductor capacitor. Biophys. J. 92(3), 1096–1111 (2007)CrossRef
84.
Zurück zum Zitat Vassanelli, S., Mahmud, M., Girardi, S., and Maschietto, M.: On the way to large-scale and high-resolution brain-chip interfacing. Cogn. Comput. 4(1), 71–81 (2012)CrossRef Vassanelli, S., Mahmud, M., Girardi, S., and Maschietto, M.: On the way to large-scale and high-resolution brain-chip interfacing. Cogn. Comput. 4(1), 71–81 (2012)CrossRef
85.
Zurück zum Zitat Wallrapp, F., and Fromherz, P.: TiO[sub 2] and HfO[sub 2] in electrolyte-oxide-silicon configuration for applications in bioelectronics. J. Appl. Phys. 99(11), 114103 (2006)CrossRef Wallrapp, F., and Fromherz, P.: TiO[sub 2] and HfO[sub 2] in electrolyte-oxide-silicon configuration for applications in bioelectronics. J. Appl. Phys. 99(11), 114103 (2006)CrossRef
86.
Zurück zum Zitat Giacomello, M., Girardi, S., Scorzeto, M., Peruffo, A., Maschietto, M., Cozzi, B., and Vassanelli, S.: Stimulation of Ca2+ signals in neurons by electrically coupled electrolyte-oxide-semiconductor capacitors. J. Neurosci. Methods 198(1), 1–7 (2011)CrossRef Giacomello, M., Girardi, S., Scorzeto, M., Peruffo, A., Maschietto, M., Cozzi, B., and Vassanelli, S.: Stimulation of Ca2+ signals in neurons by electrically coupled electrolyte-oxide-semiconductor capacitors. J. Neurosci. Methods 198(1), 1–7 (2011)CrossRef
87.
Zurück zum Zitat Eversmann, B., Jenkner, M., Hofmann, F., Paulus, C., Brederlow, R., Holzapfl, B., Fromherz, P., Merz, M., Brenner, M., Schreiter, M., Gabl, R., Plehnert, K., Steinhauser, M., Eckstein, G., Schmitt-Landsiedel, D., and Thewes, R.: A 128 x 128 cmos biosensor array for extracellular recording of neural activity. IEEE J. Solid-State Circuits, 38(12), 2306–2317 (2003)CrossRef Eversmann, B., Jenkner, M., Hofmann, F., Paulus, C., Brederlow, R., Holzapfl, B., Fromherz, P., Merz, M., Brenner, M., Schreiter, M., Gabl, R., Plehnert, K., Steinhauser, M., Eckstein, G., Schmitt-Landsiedel, D., and Thewes, R.: A 128 x 128 cmos biosensor array for extracellular recording of neural activity. IEEE J. Solid-State Circuits, 38(12), 2306–2317 (2003)CrossRef
88.
Zurück zum Zitat Lambacher, A., Vitzthum, V., Zeitler, R., Eickenscheidt, M., Eversmann, B., Thewes, R., and Fromherz, P.: Identifying firing mammalian neurons in networks with high-resolution multi-transistor array (MTA). Appl. Phys. 102(1), 1–11 (2011)CrossRef Lambacher, A., Vitzthum, V., Zeitler, R., Eickenscheidt, M., Eversmann, B., Thewes, R., and Fromherz, P.: Identifying firing mammalian neurons in networks with high-resolution multi-transistor array (MTA). Appl. Phys. 102(1), 1–11 (2011)CrossRef
89.
Zurück zum Zitat Eversmann, B., Lambacher, A., Gerling, T. Kunze, A., Fromherz, P., and Thewes, R.: A neural tissue interfacing chip for in-vitro applications with 32k recording / stimulation channels on an active area of 2.6 mm2. In ESSCIRC (ESSCIRC), 2011 Proceedings of the 41, 211–214 (2011) Eversmann, B., Lambacher, A., Gerling, T. Kunze, A., Fromherz, P., and Thewes, R.: A neural tissue interfacing chip for in-vitro applications with 32k recording / stimulation channels on an active area of 2.6 mm2. In ESSCIRC (ESSCIRC), 2011 Proceedings of the 41, 211–214 (2011)
90.
Zurück zum Zitat Ferrea, E., Maccione, A., Medrihan, L., Nieus, T., Ghezzi, D., Baldelli, P., Benfenati, F., and Berdondini, L.: Large-scale, high-resolution electrophysiological imaging of field potentials in brain slices with microelectronic multielectrode arrays. Front. Neural Circuits 6, 80 (2012). doi: 10.3389/fncir.2012.00080 CrossRef Ferrea, E., Maccione, A., Medrihan, L., Nieus, T., Ghezzi, D., Baldelli, P., Benfenati, F., and Berdondini, L.: Large-scale, high-resolution electrophysiological imaging of field potentials in brain slices with microelectronic multielectrode arrays. Front. Neural Circuits 6, 80 (2012). doi: 10.​3389/​fncir.​2012.​00080 CrossRef
91.
Zurück zum Zitat Frey, U., Sedivy, J., Heer, F., Pedron, R., Ballini, M., Mueller, J., Bakkum, D., Hafizovic, S., Faraci, F. D., Greve, F., Kirstein, K.-U., and Hierlemann, A.: Switch-matrix-based high-density microelectrode array in CMOS technology. IEEE J. Solid-State Circuits 45(2), 467–482 (2010)CrossRef Frey, U., Sedivy, J., Heer, F., Pedron, R., Ballini, M., Mueller, J., Bakkum, D., Hafizovic, S., Faraci, F. D., Greve, F., Kirstein, K.-U., and Hierlemann, A.: Switch-matrix-based high-density microelectrode array in CMOS technology. IEEE J. Solid-State Circuits 45(2), 467–482 (2010)CrossRef
92.
Zurück zum Zitat Felderer, F., and Fromherz, P.: Transistor needle chip for recording in brain tissue. Appl. Phys. 104(1), 1–6 (2011)CrossRef Felderer, F., and Fromherz, P.: Transistor needle chip for recording in brain tissue. Appl. Phys. 104(1), 1–6 (2011)CrossRef
93.
Zurück zum Zitat Weis, R., and Fromherz, P.: Frequency dependent signal transfer in neuron transistors. Phys. Rev. E 55(1), 877 (1997)CrossRef Weis, R., and Fromherz, P.: Frequency dependent signal transfer in neuron transistors. Phys. Rev. E 55(1), 877 (1997)CrossRef
94.
Zurück zum Zitat Liu, J., Xie, C., Dai, X., Jin, L., Zhou, W., and Lieber, C.M.: Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials. Proc. Natl. Acad. Sci. 110(17), 6694–6699 (2013)CrossRef Liu, J., Xie, C., Dai, X., Jin, L., Zhou, W., and Lieber, C.M.: Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials. Proc. Natl. Acad. Sci. 110(17), 6694–6699 (2013)CrossRef
95.
Zurück zum Zitat Yang, W., Ratinac, K.R., Ringer, S.P., Thordarson, P., Gooding, J.J., and Braet, F., Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew. Chem. Int. Ed. 49(12), 2114–2138 (2010)CrossRef Yang, W., Ratinac, K.R., Ringer, S.P., Thordarson, P., Gooding, J.J., and Braet, F., Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew. Chem. Int. Ed. 49(12), 2114–2138 (2010)CrossRef
96.
Zurück zum Zitat Seymour, J.P.: Advanced Polymer-based Microfabricated Neural Probes Using Biologically Driven Designs. Dissertation, University of Michigan (2009). Seymour, J.P.: Advanced Polymer-based Microfabricated Neural Probes Using Biologically Driven Designs. Dissertation, University of Michigan (2009).
97.
Zurück zum Zitat Kozai, T.D.Y., Langhals, N.B., Patel, P.R., Deng, X., Zhang, H., Smith, K. L., Lahann, J., Kotov, N.A., and Kipke, D.R.: Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat. Mater. 11(12), 1065-1073 (2012)CrossRef Kozai, T.D.Y., Langhals, N.B., Patel, P.R., Deng, X., Zhang, H., Smith, K. L., Lahann, J., Kotov, N.A., and Kipke, D.R.: Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat. Mater. 11(12), 1065-1073 (2012)CrossRef
98.
Zurück zum Zitat Brenner, A., Stein R.B., and Normann, R.A.: Selective stimulation of cat sciatic nerve using an array of varying length microelectrodes. Journal of Neurophysiology 85, 1585–1594 (2001) Brenner, A., Stein R.B., and Normann, R.A.: Selective stimulation of cat sciatic nerve using an array of varying length microelectrodes. Journal of Neurophysiology 85, 1585–1594 (2001)
99.
Zurück zum Zitat Bhandari, R., Negi, S., Rieth, L., Normann, R.A., and Solzbacher, F.: A novel masking method for high aspect ratio penetrating microelectrode arrays. J. Micromech. Microeng. 19, 035004 (8pp) (2009)CrossRef Bhandari, R., Negi, S., Rieth, L., Normann, R.A., and Solzbacher, F.: A novel masking method for high aspect ratio penetrating microelectrode arrays. J. Micromech. Microeng. 19, 035004 (8pp) (2009)CrossRef
Metadaten
Titel
Multielectrode and Multitransistor Arrays for In Vivo Recording
verfasst von
Stefano Vassanelli
Copyright-Jahr
2014
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4899-8038-0_8

Neuer Inhalt