Skip to main content

Free-space Optical (FSO) Platforms: Unmanned Aerial Vehicle (UAV) and Mobile

  • Chapter
  • First Online:

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 186))

Abstract

This chapter discusses the emerging technology of unmanned aerial vehicle (UAV)-based free-space optical (FSO) communication links. UAVs are a possible future application for both civil and military use. The large amount of data generated by the UAVs requires high data rate connectivity, thus making FSO communication very suitable. This chapter discusses some important issues using FSO links such as the FSO unit alignment and the beam attenuation/fluctuation due to the atmosphere. The technical challenges for the alignment in tracking and acquisition are addressed. Detailed descriptions are provided in the following areas: alignment and tracking of a FSO link to a UAV, short-length Raptor codes for mobile UAV, and a modulating retroreflector (MRR) FSO communication terminal on a UAV. A new methodology of using multiple UAVs in a cooperative swarm mode is also described. Specific areas for UAV swarms are discussed, such as large and adaptive beam divergence for inter-UAV FSO communication, networking architectures, reliability, and appropriate modulation scheme (pulse position modulation, PPM/on-off keying, OOK; incoherent detection). Another section of this chapter deals with the problem associated with mobile platforms, i.e., tracking in moving vehicles and gimbals. The challenges addressed are: variation in receiver beam profile of the FSO link and variation in received optical power due to constantly changing transmitter/receiver separation. Some basic building blocks for high-speed mobile ad hoc networks (MANET) using FSO is described with protocols operating under high mobility. An FSO structure is described which can achieve angular diversity, spatial reuse, and are multielement. The link performance of mobile optical links in the presence of atmospheric turbulence is provided for a FSO-based mobile sensor network. Mobile communication challenges and potential solutions are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. V. Gadwal, S. Hammel, Free-space optical communication links in a marine environment. Proc. SPIE. 6304, 1–11 (2006)

    Google Scholar 

  2. T. I. Kin, H. Refai, J.J. Sluss Jr., Y. Lee, Control system analysis for ground/air-to-air laser communications using simulation. Proc. IEEE 24th Digital Avionics Syst. Conf. 1.C.3-1–1.C.3-7 (2005)

    Google Scholar 

  3. A. Harris, J.J. Suss Jr., H.H. Refai, Alignment and tracking of a free-space optical communication link to a UAV. Proc. IEEE 24th Digital Avionics Syst. Conf., IEEE Conf. 0-7803-9307-4/05/, 1.C.2-1–1.C.2-9 (2005)

    Google Scholar 

  4. A. Biswas, S. Pazzola, Deep-space optical communications downlink budget from mars: System parameters. Interplanetary Network Progress Report, Jet Propulsion Laboratory (2003)

    Google Scholar 

  5. W. Zhang, S. Hranilovic, Short-length raptor codes for mobile free-space optical channels. 978-1-4244-3435-009/IEEE ICC Proc. (2009)

    Google Scholar 

  6. G.G. Ortiz, S. Lee, S. Monacos, M. Wright, A. Biswas, Design and development of a robust ATP subsystem for the Altair UAV-to-Ground Laesrcom 2.5 Gbps Demonstration. SPIE Proc. 4975, 103–114 (2003)

    Article  ADS  Google Scholar 

  7. Ch. Chlestil, E. Leitgeb, S.S. Muhammad, A. Friedl, K. Zettl, N.P. Schmitt, W. Rehm, N. Perlot, Optical wireless on swarm UAVs for high bit rate applications. Proc. IEEE Conf. CSNDSP 19th–21st July, Patras, Greece (2006)

    Google Scholar 

  8. A.K. Majumdar, F.D. Eaton, M.L. Jensen, D.T. Kyrazis, B. Schumm, M.P. Dierking, M.A. Shoemake, D. Dexheimer, J.C. Ricklin, Atmoepheric turbulence measurements over desert site using ground-based instruments, kite/tetherd-blimp platform and aircraft relevant to optical communications and imaging systems: Preliminary results. Proc. SPIE 6304, 63040X-1–63040X-12 (2006)

    Article  ADS  Google Scholar 

  9. E. Leitgeb, Ch. Chlestil, A. Friedl, K. Zettl, S.S. Muhammad, Feasibility study: UAVs. TU-Graz/EADS, Study (2005)

    Google Scholar 

  10. M. Al-Akkoumi, R. Huck, J. Sluss Free-space optics technology improves situational awareness on the battlefield. SPIE Newsroom, 1–3 (2007). 10.1117/2, 1200709.0858

    Google Scholar 

  11. A. Harris, J.J. Sluss, H.H. Refai, Free-space optical wavelength diversity scheme for fog mitigation in a ground-to-unmanned-aerial-vehicle communications link. Opt. Eng. 45(8), 86001 (2006)

    Article  Google Scholar 

  12. M. Locke, M. Czarnomski, A. Qadir, B. Setness, N. Baer, J. Meyer, W.H. Semke, High-performance two-axis gimbal system for free space laser communications onboard unmanned aircraft systems. Proc. SPIE. 7923, 79230M-1–79230M-8 (2011)

    Article  ADS  Google Scholar 

  13. K.H. Heng, N. Liu, Y. He, W.D. Zhong, T.H. Cheng, Adaptive beam divergence for inter-UAV free space optical communications. IEEE Conf. IPGC (2008)

    Google Scholar 

  14. S.G. Lambert, W.L. Casey, Laser Communications in Space (Artech House, Boston, 1995)

    Google Scholar 

  15. G.C. Gilbreath et al., Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles. Opt. Eng. 40(7), 1348–1356 (2001)

    Article  ADS  Google Scholar 

  16. P.G. Goetz et al., Modulating retro-reflector lasercom systems at the naval research laboratory. The IEEE Military Communications Conference- Unclassified Program- Systems Perspective Track, 1601–1606 (2010). 978-1-4244-8180-410

    Google Scholar 

  17. A. Carrasco-Casado, R. Vergaz, J.M. Sanchez-Pena, Design and early development of a UAV terminal and a ground station for laser communications. Proc. SPIE. 8184, 81840E-1–81840E-9 (2011)

    Article  ADS  Google Scholar 

  18. A. Carrasco-Casado, R. Vergaz, J.M. Sanchez-Pena, E. Oton, M.A. Geday, J.M. Oton, Low-impact air-to-ground free space communication system design and first results. IEEE Conference on Space Optical Systems and Applications, (2011). 978-1-4244-9685-311

    Google Scholar 

  19. S.S. Muhammad, T. Plank, E. Leitgeb, A. Friedl, K. Zettl, T. Javornik, N. Schmitt. Challenges in establishing free space optical communications between flying vehicle. IEEE Proceedings, CSNDSP08, 82–86, (2008). 978-1-4244-1876-308

    Google Scholar 

  20. L.C. Andres, R.L. Phillips, Laser Beam Propagation through Random Media (SPIE, Bellingham, 1998)

    Google Scholar 

  21. A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE, Piscataway, 1997)

    MATH  Google Scholar 

  22. A. Harris, T. Giuma, Divergence and power variations in mobile free-space optical communications. IEEE Third International Conference on Systems, 174–178 (2008). 978-0-7695-3105-208

    Google Scholar 

  23. K. Yoshida, T. Tsujimura, Tracking control of the mobile terminal in an active free-space optical communication system. SICE-ICASE International Joint Conference, 89-950038-5-5 98560/06, Bexco, Busan, Korea, 369–374, (Oct. 18–21, 2006)

    Google Scholar 

  24. V.V. Nikulin, J.E. Malowicki, R.M. Khandekar, V.A. Skomin, D.J. Legare, Experimental demonstration of a retro-reflective laser communication link on a mobile platform. Proc. SPIE. 7587, 75870F-1–75870F-9 (2010)

    Article  ADS  Google Scholar 

  25. M. Bilgi, Capacity scaling in free-space-optical mobile ad-hoc networks. A Master’s Thesis, at the University of Nevada, Reno, May 2008

    Google Scholar 

  26. M. Yuksel, J. Akella, S. Kalyanaraman, P. Dutta, Free-space mobile ad hoc networks: Auto-configurable building blocks. Wirel. Netw. (Springer, 2007). doi:10.1007/s11276-007-0040-y

    Google Scholar 

  27. M. Yuksel, J. Akella, S. Kalyanaraman, P. Dutta, Optimal communication coverage for free-space-optical manet building blocks. http://www.shivkumar.org/research/papers/unycn05.pdf, Access date 2014. Also see: CiteSeer × β, Devleoped by Pennsylvania State University, 2007–2010. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.143.5616

  28. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Majumdar, A. (2015). Free-space Optical (FSO) Platforms: Unmanned Aerial Vehicle (UAV) and Mobile. In: Advanced Free Space Optics (FSO). Springer Series in Optical Sciences, vol 186. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0918-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0918-6_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0917-9

  • Online ISBN: 978-1-4939-0918-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics