Skip to main content

2016 | OriginalPaper | Buchkapitel

36. Combustion Characteristics of Materials and Generation of Fire Products

verfasst von : Mohammed M. Khan, Archibald Tewarson, Marcos Chaos

Erschienen in: SFPE Handbook of Fire Protection Engineering

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hazards associated with fire are characterized by the generation of calorific energy and products, per unit of time, as a result of the chemical reactions of surfaces and material vapors with oxygen from air. Thermal hazards constitute those scenarios where the release of heat is of major concern. On the other hand, nonthermal hazards are characterized by fire products (smoke, toxic, corrosive, and odorous compounds.) Generation rates of heat and fire products (and their nature) are governed by (1) fire initiation (ignition); (2) fire propagation rate beyond the ignition zone; (3) fire ventilation; (4) external heat sources; (5) presence or absence of fire suppression/extinguishing agents; and (6) materials: (a) their shapes, sizes, and arrangements; (b) their chemical natures; (c) types of additives mixed in; and (d) presence of other materials. In this handbook most of these areas have been discussed from fundamental as well as applied views. For example, the mechanisms of thermal decomposition of polymers, which govern the generation rates of material vapors, are discussed in Chap. 7, generation rate of heat (or heat release rate) from the viewpoint of thermochemistry is discussed in Chap. 5, Flaming ignition of the mixture of material vapors and air is discussed in Chap. 21, and surface flame spread in Chap. 23.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Glossar
Nomenclature
A
total exposed surface area of the material (m2)
a j
mass coefficient for the product yield (g/g)
b j
molar coefficient for the product yield (g/mol)
B cr
critical mass transfer number
CHF
critical heat flux (kW/m2)
Ċ O ″
mass consumption rate of oxygen (g/m2/s)
Ċ stoich,O ″
stoichiometric mass consumption rate of oxygen (g/m2/s)
c O
mass of oxygen consumed per unit mass of fuel (g/g)
c P
specific heat (kJ/g/K)
Δc P
difference between the heat capacities of the extinguishing agent and the fire products (kJ/g/K)
D
optical density (1/m)
E i
total amount of heat generated in the combustion of a material (kJ)
f j
volume fraction of a product
fp
fire property
FPI
Fire Propagation Index
FSP c
convective flame spread parameter
Ġ j ″
mass generation rate of product j (g/m2/s)
Ġ stoich,j ″
stoichiometric mass generation rate of product j (g/m2/s)
ΔH i
heat of combustion per unit mass of fuel vaporized (kJ/g)
ΔH D
heat of dissociation (kJ/g)
ΔH g
heat of gasification at ambient temperature (kJ/g)
ΔH g,con
flame convective energy transfer to the fuel per unit mass of fuel gasified (kJ/g)
ΔH m
heat of melting at the melting temperature (kJ/g)
ΔH T
net heat of complete combustion per unit of fuel vaporized (kJ/g)
ΔH v
heat of vaporization at the vaporization temperature (kJ/g)
ΔH CO *
net heat of complete combustion per unit mass of CO generated (kJ/g)
\( \varDelta {H}_{{\mathrm{CO}}_2}^{*} \)
net heat of complete combustion per unit mass of CO2 generated (kJ/g)
ΔH O *
net heat of complete combustion per unit mass of oxygen consumed (kJ/g)
HRP
heat release parameter
h i
mass coefficient for the heat of combustion (kJ/g)
I/I 0
fraction of light transmitted through smoke
j
fire product
k
thermal conductivity (kW/m/K)
L sp
smoke point (m)
l
optical path length (m)
ṁ″
mass loss rate (g/m2/s)
M
molecular weight (g/mol)
m i
molar coefficient for the heat of combustion (kJ/mol)
ṁ air
mass flow rate of air (g/s)
\( {\dot{q}}_e^{{\prime\prime} } \)
external heat flux (kW/m2)
\( {\dot{q}}_f^{{\prime\prime} } \)
flame heat flux (kW/m2)
\( {\dot{Q}}_i^{{\prime\prime} } \)
heat release rate per unit sample surface area (kW/m2)
\( {\dot{Q}}_i^{\prime } \)
heat release rate per unit sample width (kW/m)
S
stoichiometric mass air-to-fuel ratio (g/g)
t
time (s)
t f
time at which there is no more vapor formation (s)
t 0
time at which the sample is exposed to heat (s)
T
temperature (K)
ΔT ig
ignition temperature above ambient (K)
TRP
thermal response parameter (kW⋅s1/2/m2)
u
fire propagation rate (mm/s or m/s)
\( \dot{V} \)
total volumetric flow rate of fire product-air mixture (m3/s)
total mass flow rate of the fire product-air mixture (g/s)
W f
total mass of the material lost in the flaming and nonflaming process (g)
W j
total mass of product j generated in the flaming and nonflaming process (g)
X f
flame height (m or mm)
X p
pyrolysis front (m or mm)
X t
total length available for fire propagation (m or mm)
y j
yield of product j
Y j,ex
mass fraction of extinguishing agent
Y O
mass fraction of oxygen
Greek Letters
α
correlation coefficient (nonflaming fire)
β
correlation coefficient (transition region)
ϕ
kinetic parameter for flame extinction
ξ
correlation coefficient (transition region)
Φ
equivalence ratio
χ ch
combustion efficiency
χ con
convective component of the combustion efficiency
χ rad
radiative component of the combustion efficiency
η j
generation efficiency
κ
ratio between the kinetic parameters for the flame temperature and adiabatic flame temperature
λ
wavelength of light (μm)
σ
Stefan-Boltzmann constant (56.7 × 10−12 kW/m2/K4)
\( \overline{\tau} \)
average specific extinction area (m2/g)
ρ
density (g/m3)
ν j
stoichiometric coefficient of product j
ν O
stoichiometric coefficient of oxygen
Ψ j
stoichiometric yield for the maximum conversion of fuel to product j
ΨO
stoichiometric mass oxygen-to-fuel ratio (g/g)
ζ
ratio of fire properties for ventilation-controlled to well-ventilated combustion
ζ oxid
oxidation zone product generation efficiency ratio
ζ red
reduction zone product generation efficiency ratio
Subscripts
a
air or ambient
ad
adiabatic
asy
asymptotic
ch
chemical
con
convective
cr
critical
e
external
ex
extinguishment
f
flame or fuel
fc
flame convective
fr
flame radiative
g
gas
g,con
flame convective energy for fuel gasification
i
chemical, convective, radiative
ig
ignition
j
fire product
n
net
0
initial
oxid
oxidation zone of a flame
rad
radiation
red
reduction zone of a flame
stoich
stoichiometric for the maximum possible conversion of fuel monomer to a product
rr
surface re-radiation
s
surface, smoke
vc
ventilation-controlled fire
wv
well-ventilated fire
infinite amount of air
Superscripts
.
per unit time (s−1)
per unit width (m−1)
ʺ
per unit area (m−2)
Literatur
2.
Zurück zum Zitat Smith, EE (1972) Heat Release Rate of Building Materials. In: Robertson AF (ed) Ignition, Heat Release, and Non-combustibility of Materials, ASTM Special Technical Publication 502, pp. 119–134. doi:10.1520/STP502-EB Smith, EE (1972) Heat Release Rate of Building Materials. In: Robertson AF (ed) Ignition, Heat Release, and Non-combustibility of Materials, ASTM Special Technical Publication 502, pp. 119–134. doi:10.​1520/​STP502-EB
4.
Zurück zum Zitat Sarkos CP, Filipczak RA, Abramowitz A (1989) Preliminary Evaluation of an Improved Flammability Test Method for Aircraft Materials. Technical Report DOT/FAA/CT-89/15, Federal Aviation Administration, Atlantic City, NJ. Sarkos CP, Filipczak RA, Abramowitz A (1989) Preliminary Evaluation of an Improved Flammability Test Method for Aircraft Materials. Technical Report DOT/FAA/CT-89/15, Federal Aviation Administration, Atlantic City, NJ.
8.
Zurück zum Zitat Tewarson A, Tamanini F. (1976) Research and Development for a Laboratory-Scale Flammability Test Method for Cellular Plastics. Technical Report No. 22524, RC76-T-64, National Institute of Standards and Technology, Gaithersburg, MD. Tewarson A, Tamanini F. (1976) Research and Development for a Laboratory-Scale Flammability Test Method for Cellular Plastics. Technical Report No. 22524, RC76-T-64, National Institute of Standards and Technology, Gaithersburg, MD.
9.
Zurück zum Zitat Tewarson A (1977) Heat Release Rate in Fires. J Fire Flammabl 8:115–121. Tewarson A (1977) Heat Release Rate in Fires. J Fire Flammabl 8:115–121.
10.
Zurück zum Zitat ASTM E2058-13a (2013) Standard Test Methods for Measurement of Synthetic Polymer Material Flammability Using a Fire Propagation Apparatus (FPA), ASTM International, West Conshohocken, PA. doi:10.1520/E2058, www.astm.org. ASTM E2058-13a (2013) Standard Test Methods for Measurement of Synthetic Polymer Material Flammability Using a Fire Propagation Apparatus (FPA), ASTM International, West Conshohocken, PA. doi:10.​1520/​E2058, www.​astm.​org.
11.
Zurück zum Zitat ISO 12136:2011 (2011) Reaction to Fire tests – Measurement of Material Properties Using a Fire Propagation Apparatus. International Organization for Standardization, Geneva, Switzerland. ISO 12136:2011 (2011) Reaction to Fire tests – Measurement of Material Properties Using a Fire Propagation Apparatus. International Organization for Standardization, Geneva, Switzerland.
12.
Zurück zum Zitat Tewarson A. (1980) Physico-Chemical and Combustion/Pyrolysis Properties of Polymeric Materials, Technical Report NBS-GCR-80-295, National Institute of Standards and Technology, Gaithersburg, MD. Tewarson A. (1980) Physico-Chemical and Combustion/Pyrolysis Properties of Polymeric Materials, Technical Report NBS-GCR-80-295, National Institute of Standards and Technology, Gaithersburg, MD.
14.
Zurück zum Zitat Tewarson A. (1982) Experimental Evaluation of Flammability Parameters of Polymeric Materials. In: Lewin M, Atlas SM, Pearce EM (eds) Flame Retardant Polymeric Materials, Plenum Press, New York, pp. 97–153.CrossRef Tewarson A. (1982) Experimental Evaluation of Flammability Parameters of Polymeric Materials. In: Lewin M, Atlas SM, Pearce EM (eds) Flame Retardant Polymeric Materials, Plenum Press, New York, pp. 97–153.CrossRef
15.
Zurück zum Zitat Tewarson A. (1986) Prediction of Fire Properties of Materials Part 1: Aliphatic and Aromatic Hydrocarbons and Related Polymers. Technical Report NBS-GCR-86-521, National Institute of Standards and Technology, Gaithersburg, MD. Tewarson A. (1986) Prediction of Fire Properties of Materials Part 1: Aliphatic and Aromatic Hydrocarbons and Related Polymers. Technical Report NBS-GCR-86-521, National Institute of Standards and Technology, Gaithersburg, MD.
16.
Zurück zum Zitat Tewarson A, Khan MM (1992) A New Standard Test Method for the Quantification of Fire Propagation Behavior of Electrical Cables Using Factory Mutual Research Corporation’s Small-Scale Flammability Apparatus. Fire Technol 28:215–227. doi:10.1007/BF01857691 CrossRef Tewarson A, Khan MM (1992) A New Standard Test Method for the Quantification of Fire Propagation Behavior of Electrical Cables Using Factory Mutual Research Corporation’s Small-Scale Flammability Apparatus. Fire Technol 28:215–227. doi:10.​1007/​BF01857691 CrossRef
22.
Zurück zum Zitat Babrauskas V (1982) Development of the Cone Calorimeter - A Bench-Scale Heat Release Rate Apparatus Based on Oxygen Consumption. Technical Report NBSIR 82–2611, National Institute of Standards and Technology, Gaithersburg, MD. Babrauskas V (1982) Development of the Cone Calorimeter - A Bench-Scale Heat Release Rate Apparatus Based on Oxygen Consumption. Technical Report NBSIR 82–2611, National Institute of Standards and Technology, Gaithersburg, MD.
23.
Zurück zum Zitat Babrauskas V (1992) The Cone Calorimeter, In: Babrauskas V, Grayson SJ (eds) Heat Release in Fires, Elsevier Publishing Company, London, UK, pp. 61–92. Babrauskas V (1992) The Cone Calorimeter, In: Babrauskas V, Grayson SJ (eds) Heat Release in Fires, Elsevier Publishing Company, London, UK, pp. 61–92.
24.
Zurück zum Zitat ASTM E1354-15 (2015) Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter, ASTM International, West Conshohocken, PA. doi:10.1520/E1354-15, www.astm.org. ASTM E1354-15 (2015) Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter, ASTM International, West Conshohocken, PA. doi:10.​1520/​E1354-15, www.​astm.​org.
27.
Zurück zum Zitat Delichatsios MA, Panagiotou Th, Kiley F (1991) . The Use of Time to Ignition Data for Characterizing the Thermal Inertia and the Minimum (Critical) Heat Flux for Ignition or Pyrolysis. Combust Flame 84:323–332. doi:10.1016/0010-2180(91)90009-Z CrossRef Delichatsios MA, Panagiotou Th, Kiley F (1991) . The Use of Time to Ignition Data for Characterizing the Thermal Inertia and the Minimum (Critical) Heat Flux for Ignition or Pyrolysis. Combust Flame 84:323–332. doi:10.​1016/​0010-2180(91)90009-Z CrossRef
32.
Zurück zum Zitat Scudamore MJ, Briggs PJ, Prager FH (1991) Cone Calorimetry - A Review of Tests Carried Out on Plastics for the Association of Plastics Manufacturers in Europe. Fire Mater 15:65–84. doi:10.1002/fam.810150205 CrossRef Scudamore MJ, Briggs PJ, Prager FH (1991) Cone Calorimetry - A Review of Tests Carried Out on Plastics for the Association of Plastics Manufacturers in Europe. Fire Mater 15:65–84. doi:10.​1002/​fam.​810150205 CrossRef
37.
39.
Zurück zum Zitat ICEA T-29-520 (1986) Conducting Vertical Cable Tray Flame Tests with Theoretical Heat Input Rate of 210,000 B.T.U./Hour, Insulated Cable Engineers Association, Englewood, CO ICEA T-29-520 (1986) Conducting Vertical Cable Tray Flame Tests with Theoretical Heat Input Rate of 210,000 B.T.U./Hour, Insulated Cable Engineers Association, Englewood, CO
40.
Zurück zum Zitat CAN/CSA-C22.2 (2009) Optical Fiber Cable and Communication Cable Raceway Systems, CSA Group, Toronto, ON CAN/CSA-C22.2 (2009) Optical Fiber Cable and Communication Cable Raceway Systems, CSA Group, Toronto, ON
41.
Zurück zum Zitat UL 1581 (2001) Reference Standard for Electrical Wires, Cables, and Flexible Cords, Underwriters Laboratories, Northbrook, IL UL 1581 (2001) Reference Standard for Electrical Wires, Cables, and Flexible Cords, Underwriters Laboratories, Northbrook, IL
42.
Zurück zum Zitat Tewarson A, Chin W, Shuford R (2004) Materials Specifications, Standards, and Testing. In: Harper CA (ed) Handbook of Building Materials for Fire Protection. McGraw-Hill, New York, pp. 2.1-2.54 . Tewarson A, Chin W, Shuford R (2004) Materials Specifications, Standards, and Testing. In: Harper CA (ed) Handbook of Building Materials for Fire Protection. McGraw-Hill, New York, pp. 2.1-2.54 .
45.
Zurück zum Zitat Khan MM (1999) Fire Propagation Characteristics of Conveyor Belts. Proceedings of the Third International Conference on Fire Research and Engineering, pp. 205-216, Society of Fire Protection Engineers, Bethesda, MD. Khan MM (1999) Fire Propagation Characteristics of Conveyor Belts. Proceedings of the Third International Conference on Fire Research and Engineering, pp. 205-216, Society of Fire Protection Engineers, Bethesda, MD.
47.
Zurück zum Zitat Tewarson A (2003) Flammability of Polymers. In: Andrady AL (ed) Plastics and Environment. John Wiley & Sons, Inc., Hoboken, NJ, pp. 403–489. Tewarson A (2003) Flammability of Polymers. In: Andrady AL (ed) Plastics and Environment. John Wiley & Sons, Inc., Hoboken, NJ, pp. 403–489.
48.
Zurück zum Zitat Tewarson A (1994) Fire Hardening Assessment (FHA) Technology for Composite Systems. Technical Report ARL-CR-178, Army Research Laboratory, Aberdeen Proving Ground, MD. Tewarson A (1994) Fire Hardening Assessment (FHA) Technology for Composite Systems. Technical Report ARL-CR-178, Army Research Laboratory, Aberdeen Proving Ground, MD.
50.
Zurück zum Zitat Lyon RE, Janssens ML (2005) Polymer Flammability. Final Report DOT/FAA/AR-05/14, Office of Aviation Research, Washington, D.C. Lyon RE, Janssens ML (2005) Polymer Flammability. Final Report DOT/FAA/AR-05/14, Office of Aviation Research, Washington, D.C.
52.
Zurück zum Zitat Newman JS (1993) Integrated Approach to Flammability Evaluation of Polyurethane Wall/Ceiling Materials. Polyurethanes World Congress, Society of the Plastics Industry, Washington, D.C. Newman JS (1993) Integrated Approach to Flammability Evaluation of Polyurethane Wall/Ceiling Materials. Polyurethanes World Congress, Society of the Plastics Industry, Washington, D.C.
54.
Zurück zum Zitat Haynes WM (ed) (2012) CRC Handbook of Chemistry and Physics, 93rd ed. CRC Press, Inc., Boca Raton, FL. Haynes WM (ed) (2012) CRC Handbook of Chemistry and Physics, 93rd ed. CRC Press, Inc., Boca Raton, FL.
55.
Zurück zum Zitat Paul MA (1962) Physical Chemistry. D.C. Heath and Company, Boston, MA, p. 46. Paul MA (1962) Physical Chemistry. D.C. Heath and Company, Boston, MA, p. 46.
56.
Zurück zum Zitat Kern DQ (1950) Process Heat Transfer. McGraw-Hill Book Company, New York, NY, p. 72. Kern DQ (1950) Process Heat Transfer. McGraw-Hill Book Company, New York, NY, p. 72.
57.
Zurück zum Zitat Hottel HC (1959) Review of Certain Laws Governing Diffusive Burning of Liquids. Fire Res Abstr Rev 1:41–44. Hottel HC (1959) Review of Certain Laws Governing Diffusive Burning of Liquids. Fire Res Abstr Rev 1:41–44.
60.
Zurück zum Zitat Dorofeev SB, Chaos M, Khan MM, Krishnamoorthy N, Chatterjee P, Wang Y, Bill RG Jr (2011) An Approach for Evaluation of Material Flammability Via Bench-Scale Testing and CFD Simulations. Proceedings of the 12th International Conference on Fire and Materials, San Francisco, CA, pp. 321–332. Dorofeev SB, Chaos M, Khan MM, Krishnamoorthy N, Chatterjee P, Wang Y, Bill RG Jr (2011) An Approach for Evaluation of Material Flammability Via Bench-Scale Testing and CFD Simulations. Proceedings of the 12th International Conference on Fire and Materials, San Francisco, CA, pp. 321–332.
61.
Zurück zum Zitat McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2015) Fire Dynamics Simulator Technical Reference Guide Volume 1: Mathematical Model. NIST Special Publication 1018-1, 6th ed, National Institute of Standards and Technology, Gaithersburg, MD. doi:10.6028/NIST.SP.1018-1 McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2015) Fire Dynamics Simulator Technical Reference Guide Volume 1: Mathematical Model. NIST Special Publication 1018-1, 6th ed, National Institute of Standards and Technology, Gaithersburg, MD. doi:10.​6028/​NIST.​SP.​1018-1
62.
Zurück zum Zitat Stoliarov SI, Lyon RE (2008) Thermo-Kinetic Model of Burning. Technical Report DOT/FAA/AR-TN08/17, Federal Aviation Administration, Atlantic City, NJ. Stoliarov SI, Lyon RE (2008) Thermo-Kinetic Model of Burning. Technical Report DOT/FAA/AR-TN08/17, Federal Aviation Administration, Atlantic City, NJ.
68.
Zurück zum Zitat de Ris JL, Yan Z (1998) Modeling Ignition and Pyrolysis of Solid Fuels. Proceedings of the 5th International Conference on Fire and Materials, San Antonio, TX, pp. 111–121. de Ris JL, Yan Z (1998) Modeling Ignition and Pyrolysis of Solid Fuels. Proceedings of the 5th International Conference on Fire and Materials, San Antonio, TX, pp. 111–121.
71.
Zurück zum Zitat Lautenberger C, Kim E, Dembsey N, Fernández-Pello C (2008) The Role of Decomposition Kinetics in Pyrolysis Modeling – Application to a Fire Retardant Polyester Composite. Fire Safety Science 9:1201–1212. doi:10.3801/IAFSS.FSS.9-1201 Lautenberger C, Kim E, Dembsey N, Fernández-Pello C (2008) The Role of Decomposition Kinetics in Pyrolysis Modeling – Application to a Fire Retardant Polyester Composite. Fire Safety Science 9:1201–1212. doi:10.​3801/​IAFSS.​FSS.​9-1201
72.
Zurück zum Zitat Webster RD (2009) Pyrolysis Model Parameter Optimization Using a Customized Stochastic Hill-Climber Algorithm and Bench Scale Fire Test Data. MS Thesis, University of Maryland, College Park, MD. http://hdl.handle.net/1903/10004. Accessed August 2015. Webster RD (2009) Pyrolysis Model Parameter Optimization Using a Customized Stochastic Hill-Climber Algorithm and Bench Scale Fire Test Data. MS Thesis, University of Maryland, College Park, MD. http://​hdl.​handle.​net/​1903/​10004. Accessed August 2015.
73.
Zurück zum Zitat Chaos M, Khan MM, Krishnamoorthy N, de Ris JL, Dorofeev SB (2010) FPA Bench-Scale Flammability Tests and Extraction of Solid Fuel Properties for Fire Models. Proceedings of the 6th International Seminar on Fire and Explosion Hazards, Leeds, UK, paper 161. doi:10.3850/978-981-08-7724-8_15-01 Chaos M, Khan MM, Krishnamoorthy N, de Ris JL, Dorofeev SB (2010) FPA Bench-Scale Flammability Tests and Extraction of Solid Fuel Properties for Fire Models. Proceedings of the 6th International Seminar on Fire and Explosion Hazards, Leeds, UK, paper 161. doi:10.​3850/​978-981-08-7724-8_​15-01
74.
Zurück zum Zitat Chaos M, Khan MM, Krishnamoorthy M, de Ris JL, Dorofeev SB (2010) Bench-Scale Flammability Experiments: Determination of Material Properties Using Pyrolysis Models for Use in CFD Fire Simulations. Proceedings of the 12th International Fire Science and Engineering Conference, Interflam2010, Nottingham, UK, pp. 697–708. Chaos M, Khan MM, Krishnamoorthy M, de Ris JL, Dorofeev SB (2010) Bench-Scale Flammability Experiments: Determination of Material Properties Using Pyrolysis Models for Use in CFD Fire Simulations. Proceedings of the 12th International Fire Science and Engineering Conference, Interflam2010, Nottingham, UK, pp. 697–708.
75.
Zurück zum Zitat Chaos M, Khan MM, Krishnamoorthy N, de Ris JL, Dorofeev SB (2011) Evaluation of Optimization Schemes and Determination of Solid Fuel Properties for CFD Fire Models using Bench-scale Pyrolysis Tests. Proc Combust Inst 33:2599–2606. doi:10.1016/j.proci.2010.07.018 CrossRef Chaos M, Khan MM, Krishnamoorthy N, de Ris JL, Dorofeev SB (2011) Evaluation of Optimization Schemes and Determination of Solid Fuel Properties for CFD Fire Models using Bench-scale Pyrolysis Tests. Proc Combust Inst 33:2599–2606. doi:10.​1016/​j.​proci.​2010.​07.​018 CrossRef
77.
78.
Zurück zum Zitat Jurkowski T, Jarny Y, Delaunay D (1997) Estimation of Thermal Conductivity of Thermoplastics under Moulding Conditions: An Apparatus and an Inverse Algorithm. Int J Heat Mass Transf 40:4169–4181. doi:10.1016/S0017-9310(97)00027-6 CrossRef Jurkowski T, Jarny Y, Delaunay D (1997) Estimation of Thermal Conductivity of Thermoplastics under Moulding Conditions: An Apparatus and an Inverse Algorithm. Int J Heat Mass Transf 40:4169–4181. doi:10.​1016/​S0017-9310(97)00027-6 CrossRef
79.
Zurück zum Zitat García S, Guynn J, Scott EP (1998) Use of Genetic Algorithms in Thermal Property Estimation: Part II – Simultaneous Estimation of Thermal Properties. Numer Heat Transf A 33:149–168. doi:10.1080/10407789808913931 CrossRef García S, Guynn J, Scott EP (1998) Use of Genetic Algorithms in Thermal Property Estimation: Part II – Simultaneous Estimation of Thermal Properties. Numer Heat Transf A 33:149–168. doi:10.​1080/​1040778980891393​1 CrossRef
80.
Zurück zum Zitat Loulou T (2007) Combined Parameter and Function Estimation with Application to Thermal Conductivity and Surface Heat Flux. J Heat Transf 129:1309–1320. doi:10.1115/1.2755064 CrossRef Loulou T (2007) Combined Parameter and Function Estimation with Application to Thermal Conductivity and Surface Heat Flux. J Heat Transf 129:1309–1320. doi:10.​1115/​1.​2755064 CrossRef
81.
Zurück zum Zitat Veiseh S, Hakkaki-Fard A, Kowsary F (2009) Determining of the Air/Fiber Conductivity of Mineral Wool Insulations in Building Applications Using Parameter Estimation Methods. J Build Phys 32:243–260. doi:10.1177/1744259108099431 CrossRef Veiseh S, Hakkaki-Fard A, Kowsary F (2009) Determining of the Air/Fiber Conductivity of Mineral Wool Insulations in Building Applications Using Parameter Estimation Methods. J Build Phys 32:243–260. doi:10.​1177/​1744259108099431​ CrossRef
82.
88.
93.
Zurück zum Zitat Krishnamoorthy N, Chaos M, Khan MM, Chatterjee P, Wang Y, Dorofeev SB (2010) Experimental and Numerical Study of Flame Spread in Parallel Panel Geometry. Proceedings of the 6th International Seminar on Fire and Explosion Hazards, Leeds, UK, paper 155. doi:10.3850/978-981-08-7724-8_03-07 Krishnamoorthy N, Chaos M, Khan MM, Chatterjee P, Wang Y, Dorofeev SB (2010) Experimental and Numerical Study of Flame Spread in Parallel Panel Geometry. Proceedings of the 6th International Seminar on Fire and Explosion Hazards, Leeds, UK, paper 155. doi:10.​3850/​978-981-08-7724-8_​03-07
94.
Zurück zum Zitat Krishnamoorthy N, Chaos M, Khan MM, Chatterjee P, Wang Y, Dorofeev SB (2010) Application of Bench-Scale Material Flammability Data to Model Flame Spread in Medium-Scale Parallel Panel Test. Proceedings of the 12th International Fire Science and Engineering Conference, Interflam2010, Nottingham UK, pp. 709–720. Krishnamoorthy N, Chaos M, Khan MM, Chatterjee P, Wang Y, Dorofeev SB (2010) Application of Bench-Scale Material Flammability Data to Model Flame Spread in Medium-Scale Parallel Panel Test. Proceedings of the 12th International Fire Science and Engineering Conference, Interflam2010, Nottingham UK, pp. 709–720.
95.
Zurück zum Zitat Chaos M, Khan MM, Krishnamoorthy N, Chatterjee P, Wang Y, Dorofeev SB (2011) Experiments and Modeling Of Single- and Triple-Wall Corrugated Cardboard: Effective Material Properties and Fire Behavior. Proceedings of the 12th International Conference on Fire and Materials, San Francisco, CA, pp. 625–636. Chaos M, Khan MM, Krishnamoorthy N, Chatterjee P, Wang Y, Dorofeev SB (2011) Experiments and Modeling Of Single- and Triple-Wall Corrugated Cardboard: Effective Material Properties and Fire Behavior. Proceedings of the 12th International Conference on Fire and Materials, San Francisco, CA, pp. 625–636.
96.
Zurück zum Zitat Krishnamoorthy N, Chaos M, Khan MM, Chatterjee P, Wang Y, Dorofeev SB (2011) Numerical Modeling of Flame Spread over Corrugated Cardboard on Vertical Parallel Panels. Proceedings of the 7th US National Technical Meeting of the Combustion Institute, Atlanta, GA, Paper 1 F16. Krishnamoorthy N, Chaos M, Khan MM, Chatterjee P, Wang Y, Dorofeev SB (2011) Numerical Modeling of Flame Spread over Corrugated Cardboard on Vertical Parallel Panels. Proceedings of the 7th US National Technical Meeting of the Combustion Institute, Atlanta, GA, Paper 1 F16.
97.
Zurück zum Zitat Chaos M, Wang Y, Dorofeev SB (2012) CFD Modeling of Flame Spread over Corrugated Cardboard Panels. Proceedings of the International Congress on Fire and Computer Modeling, Oct. 18–19, 2012, Universidad de Cantabria, Spain. Chaos M, Wang Y, Dorofeev SB (2012) CFD Modeling of Flame Spread over Corrugated Cardboard Panels. Proceedings of the International Congress on Fire and Computer Modeling, Oct. 18–19, 2012, Universidad de Cantabria, Spain.
101.
Zurück zum Zitat Macrae JC (1966) An Introduction to the Study of Fuel. Elsevier Publishing Company, London, UK. Macrae JC (1966) An Introduction to the Study of Fuel. Elsevier Publishing Company, London, UK.
102.
Zurück zum Zitat ASTM D4809-13 (2013) Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter (Precision Method). ASTM International, West Conshohocken, PA. doi:10.1520/D4809-13, www.astm.org. ASTM D4809-13 (2013) Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter (Precision Method). ASTM International, West Conshohocken, PA. doi:10.​1520/​D4809-13, www.​astm.​org.
105.
Zurück zum Zitat Costa C, Treand G, Moineault F, Gustin J-L (1999) Assessment of the Thermal and Toxic Effects of Chemical and Pesticide Pool Fires Based on Experimental Data Obtained Using the Tewarson Apparatus. Process Saf Environ Prot 77:154–164. doi:10.1205/095758299529974 CrossRef Costa C, Treand G, Moineault F, Gustin J-L (1999) Assessment of the Thermal and Toxic Effects of Chemical and Pesticide Pool Fires Based on Experimental Data Obtained Using the Tewarson Apparatus. Process Saf Environ Prot 77:154–164. doi:10.​1205/​095758299529974 CrossRef
106.
Zurück zum Zitat Brohez S, Delvosalle C (2009) Carbon Dioxide Generation Calorimetry - Errors Induced by the Simplifying Assumptions in the Standard Test Methods. Fire Mater 33:89–97. doi:10.1002/fam.988 CrossRef Brohez S, Delvosalle C (2009) Carbon Dioxide Generation Calorimetry - Errors Induced by the Simplifying Assumptions in the Standard Test Methods. Fire Mater 33:89–97. doi:10.​1002/​fam.​988 CrossRef
107.
Zurück zum Zitat Tewarson A, Marlair G (2004) Liquids and Chemicals. In: Harper CA (ed) Handbook of Building Materials for Fire Protection. McGraw-Hill, New York, pp. 8.1–8.43. Tewarson A, Marlair G (2004) Liquids and Chemicals. In: Harper CA (ed) Handbook of Building Materials for Fire Protection. McGraw-Hill, New York, pp. 8.1–8.43.
109.
111.
Zurück zum Zitat Biteau H, Steinhaus T, Schemel C, Simeoni A, Marlair G, Bal N, Torero JL (2008) Calculation Methods for the Heat Release Rate of Materials of Unknown Composition. Fire Saf Sci 9:1165–1176. doi:10.3801/IAFSS.FSS.9-1165 Biteau H, Steinhaus T, Schemel C, Simeoni A, Marlair G, Bal N, Torero JL (2008) Calculation Methods for the Heat Release Rate of Materials of Unknown Composition. Fire Saf Sci 9:1165–1176. doi:10.​3801/​IAFSS.​FSS.​9-1165
112.
Zurück zum Zitat Tewarson A (1986) Prediction of Fire Properties of Materials Part 1: Aliphatic and Aromatic Hydrocarbons and Related Polymers. Technical Report NBS-GCR-86-521, National Institute of Standards and Technology, Gaithersburg, MD. Tewarson A (1986) Prediction of Fire Properties of Materials Part 1: Aliphatic and Aromatic Hydrocarbons and Related Polymers. Technical Report NBS-GCR-86-521, National Institute of Standards and Technology, Gaithersburg, MD.
114.
Zurück zum Zitat Tewarson A (1988) Smoke Point Height and Fire Properties of Materials. Technical Report NBS-GCR-88-555, National Institute of Standards and Technology, Gaithersburg, MD. Tewarson A (1988) Smoke Point Height and Fire Properties of Materials. Technical Report NBS-GCR-88-555, National Institute of Standards and Technology, Gaithersburg, MD.
115.
Zurück zum Zitat Tewarson A, Zalosh RG (1989) Flammability Testing of Aircraft Cabin Materials, Paper 33 in AGARD Conference Proceedings No. 467 - Aircraft Fire Safety; Propulsion and Energetics Panel 73rd Symposium, Sintra, Portugal, May 22–26, 1989. Tewarson A, Zalosh RG (1989) Flammability Testing of Aircraft Cabin Materials, Paper 33 in AGARD Conference Proceedings No. 467 - Aircraft Fire Safety; Propulsion and Energetics Panel 73rd Symposium, Sintra, Portugal, May 22–26, 1989.
116.
Zurück zum Zitat Tsantarides L, Ostman B (1989) Smoke, Gas, and Heat Release Data for Building Products in the Cone Calorimeter. Technical Report I 8903013, Swedish Institute for Wood Technology Research, Stockholm, Sweden. Tsantarides L, Ostman B (1989) Smoke, Gas, and Heat Release Data for Building Products in the Cone Calorimeter. Technical Report I 8903013, Swedish Institute for Wood Technology Research, Stockholm, Sweden.
117.
Zurück zum Zitat Khan MM (1992) Characterization of Liquid Fuel Spray Fires. In: Cho P, Quintiere J (eds) Heat and Mass Transfer in Fire and Combustion Systems, American Society of Mechanical Engineers, New York, NY. Khan MM (1992) Characterization of Liquid Fuel Spray Fires. In: Cho P, Quintiere J (eds) Heat and Mass Transfer in Fire and Combustion Systems, American Society of Mechanical Engineers, New York, NY.
119.
Zurück zum Zitat Khan MM, Bill RG Jr (2003) Comparison of Flammability Measurements in Vertical and Horizontal Exhaust Duct in the ASTM E-2058 Fire Propagation Apparatus. Fire Mater 27:253–266. doi:10.1002/fam.830 CrossRef Khan MM, Bill RG Jr (2003) Comparison of Flammability Measurements in Vertical and Horizontal Exhaust Duct in the ASTM E-2058 Fire Propagation Apparatus. Fire Mater 27:253–266. doi:10.​1002/​fam.​830 CrossRef
121.
Zurück zum Zitat Mulholland GW, Choi MY (1998) Measurement of the Mass Specific Extinction Coefficient for Acetylene and Ethene Smoke Using the Large Agglomerate Optics Facility. Proc Combust Inst 27:1515–1522. doi:10.1016/S0082-0784(98)80559-6 CrossRef Mulholland GW, Choi MY (1998) Measurement of the Mass Specific Extinction Coefficient for Acetylene and Ethene Smoke Using the Large Agglomerate Optics Facility. Proc Combust Inst 27:1515–1522. doi:10.​1016/​S0082-0784(98)80559-6 CrossRef
122.
Zurück zum Zitat Drysdale D (1985) An Introduction to Fire Dynamics. Wiley, New York, NY, pp. 278–400. Drysdale D (1985) An Introduction to Fire Dynamics. Wiley, New York, NY, pp. 278–400.
125.
128.
Zurück zum Zitat Haynes BS, Wagner HGg (1981) Soot Formation. Prog Energy Combust Sci 7:229–273. doi:10.1016/0360-1285(81)90001-0 Haynes BS, Wagner HGg (1981) Soot Formation. Prog Energy Combust Sci 7:229–273. doi:10.1016/0360-1285(81)90001-0
129.
Zurück zum Zitat Kent JH, Wagner HGg (1984) Why Do Diffusion Flames Emit Soot. Combust Sci Technol 41:245–269. doi:10.1080/00102208408923834 Kent JH, Wagner HGg (1984) Why Do Diffusion Flames Emit Soot. Combust Sci Technol 41:245–269. doi:10.1080/00102208408923834
138.
148.
Zurück zum Zitat Madorsky SL (1964) Thermal Degradation of Organic Polymers. Interscience Publishers, John Wiley & Sons, Inc., New York, NY, p. 192. Madorsky SL (1964) Thermal Degradation of Organic Polymers. Interscience Publishers, John Wiley & Sons, Inc., New York, NY, p. 192.
149.
Zurück zum Zitat Tewarson A, Khan MM (1991) The Role of Active and Passive Fire Protection Techniques in Fire Control, Suppression and Extinguishment. Fire Saf Sci 3:1007–1017. doi:10.3801/IAFSS.FSS.3-1007 Tewarson A, Khan MM (1991) The Role of Active and Passive Fire Protection Techniques in Fire Control, Suppression and Extinguishment. Fire Saf Sci 3:1007–1017. doi:10.​3801/​IAFSS.​FSS.​3-1007
153.
Zurück zum Zitat Heskestad G (1980) The Role of Water in Suppression of Fire: A Review. J Fire Flammabl 11:254–262. Heskestad G (1980) The Role of Water in Suppression of Fire: A Review. J Fire Flammabl 11:254–262.
157.
Zurück zum Zitat Kodama H, Miyasaka K, Fernández-Pello AC (1987) Extinction and Stabilization of a Diffusion Flame on a Flat Combustible Surface with Emphasis on Thermal Controlling Mechanisms. Combust Sci Technol 54:37–50. doi:10.1080/00102208708947042 CrossRef Kodama H, Miyasaka K, Fernández-Pello AC (1987) Extinction and Stabilization of a Diffusion Flame on a Flat Combustible Surface with Emphasis on Thermal Controlling Mechanisms. Combust Sci Technol 54:37–50. doi:10.​1080/​0010220870894704​2 CrossRef
Metadaten
Titel
Combustion Characteristics of Materials and Generation of Fire Products
verfasst von
Mohammed M. Khan
Archibald Tewarson
Marcos Chaos
Copyright-Jahr
2016
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-2565-0_36