Skip to main content

2016 | OriginalPaper | Buchkapitel

9. Properties of Building Materials

verfasst von : V. K. R. Kodur, T. Z. Harmathy

Erschienen in: SFPE Handbook of Fire Protection Engineering

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Building components are to be designed to satisfy the requirements of serviceability and safety limit states. One of the major safety requirements in building design is the provision of appropriate fire resistance to various building components. The basis for this requirement can be attributed to the fact that, when other measures of containing the fire fail, structural integrity is the last line of defense. In this chapter, the term structural member is used to refer to both load-bearing (e.g., columns, beams, slabs) and non-load-bearing (e.g., partition walls, floors) building components.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Glossar
Nomenclature
a
Material constant, dimensionless
b
Constant, characteristic of pore geometry, dimensionless
c
Specific heat (J⋅kg–1⋅K–1)
\( \overline{c} \)
Specific heat for a mixture of reactants and solid products (J⋅kg–1⋅K–1)
E
Modulus of elasticity (Pa)
h
Enthalpy (J⋅kg–1)
Δh
Latent heat associated with a “reaction” (J⋅kg–1)
ΔH c
Activation energy for creep (J⋅kmol–1)
k
Thermal conductivity (W⋅m–1⋅K–1)
L v
Heat of gasification of wood
Dimension (m)
Δℓ
ℓ – ℓ 0
m
Exponent, dimensionless
M
Mass (kg)
n
Material constant, dimensionless
P
Porosity (m3⋅m–3)
q n
Net heat flux to char front
R
Gas constant (8315 J⋅kmol–1⋅K–1)
S
Specific surface area (m2.m–3)
t
Time (h)
T
Temperature (K or °C)
v
Volume fraction (m–3.m3)
w
Mass fraction (kg⋅kg–1)
Z
Zener-Hollomon parameter (h–1)
Greek Letters
α
Thermal diffusivity
β
Coefficient of linear thermal expansion (m⋅m–1)
γ
Expression defined by Equation 9.3, dimensionless
β0
Charring rate (mm/min)
δ
Characteristic pore size (m)
ε
Emissivity of pores, dimensionless
ε
Strain (deformation) (m⋅m–1)
εt0
Creep parameter (m⋅m–1)
\( {\dot{\varepsilon}}_{ts} \)
Rate of secondary creep (m.m–1⋅h–1)
θ
Temperature-compensated time (h)
ξ
Reaction progress variable, dimensionless
π
Material property (any)
ρ
Density (kg⋅m–3)
σ
Stress; strength (Pa)
σ
Stefan-Boltzmann constant (5.67 × 10–8 W⋅m–2⋅K–4)
Subscripts
g
Glass transient (temperature)
a
Of air
I
Of the ith constituent
p
At constant pressure
s
Of the solid matrix
t
True
t
Time-dependent (creep)
T
At temperature T
u
Ultimate
y
Yield
0
Original value, at reference temperature
Literatur
1.
Zurück zum Zitat T.Z. Harmathy, Technical Paper No. 242, National Research Council of Canada, Ottawa (1967). T.Z. Harmathy, Technical Paper No. 242, National Research Council of Canada, Ottawa (1967).
2.
Zurück zum Zitat T.Z. Harmathy, Fire Safety Design and Concrete, Longman Scientific and Technical, Harlow, UK (1993). T.Z. Harmathy, Fire Safety Design and Concrete, Longman Scientific and Technical, Harlow, UK (1993).
3.
Zurück zum Zitat D.A.G. Bruggeman, Physik. Zeitschr., 37, p. 906 (1936). D.A.G. Bruggeman, Physik. Zeitschr., 37, p. 906 (1936).
4.
Zurück zum Zitat R.L. Hamilton and O.K. Crosser, Industrial & Engineering Chemistry Fundamentals, 7, p. 187 (1962). R.L. Hamilton and O.K. Crosser, Industrial & Engineering Chemistry Fundamentals, 7, p. 187 (1962).
5.
Zurück zum Zitat J.C. Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., 1, Clarendon Press, Oxford, UK (1904). J.C. Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., 1, Clarendon Press, Oxford, UK (1904).
6.
Zurück zum Zitat T.Z. Harmathy, Journal of Materials, 5, p. 47 (1970). T.Z. Harmathy, Journal of Materials, 5, p. 47 (1970).
7.
Zurück zum Zitat T.Z. Harmathy, DBR Paper No. 1080, NRCC 20956, National Research Council of Canada, Ottawa (1983). T.Z. Harmathy, DBR Paper No. 1080, NRCC 20956, National Research Council of Canada, Ottawa (1983).
8.
Zurück zum Zitat V.K.R. Kodur and M.M.S. Dwaikat, “Effect of high temperature creep on fire response of restrained steel beams”, J. of Materials and Structures, 43, 10, pp. 1327–1341 (2010)CrossRef V.K.R. Kodur and M.M.S. Dwaikat, “Effect of high temperature creep on fire response of restrained steel beams”, J. of Materials and Structures, 43, 10, pp. 1327–1341 (2010)CrossRef
9.
Zurück zum Zitat J.E. Dorn, Journal of the Mechanics and Physics of Solids, 3, p. 85 (1954). J.E. Dorn, Journal of the Mechanics and Physics of Solids, 3, p. 85 (1954).
10.
Zurück zum Zitat T.Z. Harmathy, in ASTM STP422, American Society for Testing and Materials, Philadelphia (1967). T.Z. Harmathy, in ASTM STP422, American Society for Testing and Materials, Philadelphia (1967).
11.
Zurück zum Zitat T.Z. Harmathy, “Trans. Am. Soc. Mech. Eng.,” Journal of Basic Engineering, 89, p. 496 (1967).CrossRef T.Z. Harmathy, “Trans. Am. Soc. Mech. Eng.,” Journal of Basic Engineering, 89, p. 496 (1967).CrossRef
12.
Zurück zum Zitat C. Zener and J.H. Hollomon, Journal of Applied Physics, 15, p. 22 (1944). C. Zener and J.H. Hollomon, Journal of Applied Physics, 15, p. 22 (1944).
13.
Zurück zum Zitat F.H. Wittmann (ed.), Fundamental Research on Creep and Shrinkage of Concrete, Martinus Nijhoff, The Hague, Netherlands (1982). F.H. Wittmann (ed.), Fundamental Research on Creep and Shrinkage of Concrete, Martinus Nijhoff, The Hague, Netherlands (1982).
14.
Zurück zum Zitat Y. Anderberg and S. Thelandersson, Bulletin 54, Lund Institute of Technology, Lund, Sweden (1976). Y. Anderberg and S. Thelandersson, Bulletin 54, Lund Institute of Technology, Lund, Sweden (1976).
15.
Zurück zum Zitat U. Schneider, Fire and Materials, 1, p. 103 (1976). U. Schneider, Fire and Materials, 1, p. 103 (1976).
16.
Zurück zum Zitat T.Z. Harmathy, Journal of the American Concrete Institute, 65, 959 (1968). T.Z. Harmathy, Journal of the American Concrete Institute, 65, 959 (1968).
17.
Zurück zum Zitat 951 Thermogravimetric Analyzer (TGA), DuPont Instruments, Wilmington, DE (1977). 951 Thermogravimetric Analyzer (TGA), DuPont Instruments, Wilmington, DE (1977).
18.
Zurück zum Zitat T.T. Lie and V.K.R. Kodur, “Thermal and Mechanical Properties of Steel Fibre-Reinforced Concrete at Elevated Temperatures,” Canadian Journal of Civil Engineering, 23, p. 4 (1996).CrossRef T.T. Lie and V.K.R. Kodur, “Thermal and Mechanical Properties of Steel Fibre-Reinforced Concrete at Elevated Temperatures,” Canadian Journal of Civil Engineering, 23, p. 4 (1996).CrossRef
19.
Zurück zum Zitat ASTM Test Method C135 ± 86, 2007 Annual Book of ASTM Standards, 15.01, American Society for Testing and Materials, Philadelphia (2007). ASTM Test Method C135 ± 86, 2007 Annual Book of ASTM Standards, 15.01, American Society for Testing and Materials, Philadelphia (2007).
20.
Zurück zum Zitat T.Z. Harmathy and L.W. Allen, Journal of the American Concrete Institute, 70, p. 132 (1973). T.Z. Harmathy and L.W. Allen, Journal of the American Concrete Institute, 70, p. 132 (1973).
21.
Zurück zum Zitat 910 Differential Scanning Calorimeter (DSC), DuPont Instruments, Wilmington, DE (1977). 910 Differential Scanning Calorimeter (DSC), DuPont Instruments, Wilmington, DE (1977).
22.
Zurück zum Zitat J.H. Perry (ed.), Chemical Engineers’ Handbook, 3rd ed., McGraw-Hill, New York (1950). J.H. Perry (ed.), Chemical Engineers’ Handbook, 3rd ed., McGraw-Hill, New York (1950).
23.
Zurück zum Zitat W. Eitel, Thermochemical Methods in Silicate Investigation, Rutgers University, New Brunswick, Canada (1952). W. Eitel, Thermochemical Methods in Silicate Investigation, Rutgers University, New Brunswick, Canada (1952).
24.
Zurück zum Zitat T.Z. Harmathy, Industrial & Engineering Chemistry Fundamentals, 8, p. 92 (1969). T.Z. Harmathy, Industrial & Engineering Chemistry Fundamentals, 8, p. 92 (1969).
25.
Zurück zum Zitat D.A. DeVries, in Problems Relating to Thermal Conductivity, Bulletin de l’Institut International du Froid, Annexe 1952–1, Louvain, Belgique, p. 115 (1952). D.A. DeVries, in Problems Relating to Thermal Conductivity, Bulletin de l’Institut International du Froid, Annexe 1952–1, Louvain, Belgique, p. 115 (1952).
26.
Zurück zum Zitat W.D. Kingery, Introduction to Ceramics, John Wiley and Sons, New York (1960). W.D. Kingery, Introduction to Ceramics, John Wiley and Sons, New York (1960).
27.
Zurück zum Zitat T.T. Lie and V.K.R. Kodur, “Thermal Properties of Fibre-Reinforced Concrete at Elevated Temperatures,” IR 683, IRC, National Research Council of Canada, Ottawa (1995). T.T. Lie and V.K.R. Kodur, “Thermal Properties of Fibre-Reinforced Concrete at Elevated Temperatures,” IR 683, IRC, National Research Council of Canada, Ottawa (1995).
28.
Zurück zum Zitat Thermal Conductivity Meter (TC-31), Instruction Manual, Kyoto Electronics Manufacturing Co. Ltd., Tokyo, Japan (1993). Thermal Conductivity Meter (TC-31), Instruction Manual, Kyoto Electronics Manufacturing Co. Ltd., Tokyo, Japan (1993).
29.
Zurück zum Zitat ASCE, “Structural Fire Protection: Manual of Practice,” No. 78, American Society of Civil Engineers, New York (1993). ASCE, “Structural Fire Protection: Manual of Practice,” No. 78, American Society of Civil Engineers, New York (1993).
30.
Zurück zum Zitat L.T. Phan, “Fire Performance of High-Strength Concrete: A Report of the State-of-the-Art,” National Institute of Standards and Technology, Gaithersburg, MD (1996). L.T. Phan, “Fire Performance of High-Strength Concrete: A Report of the State-of-the-Art,” National Institute of Standards and Technology, Gaithersburg, MD (1996).
31.
Zurück zum Zitat U. Danielsen, “Marine Concrete Structures Exposed to Hydrocarbon Fires,” Report, SINTEF—The Norwegian Fire Research Institute, Trondheim, Norway (1997). U. Danielsen, “Marine Concrete Structures Exposed to Hydrocarbon Fires,” Report, SINTEF—The Norwegian Fire Research Institute, Trondheim, Norway (1997).
32.
Zurück zum Zitat V.K.R. Kodur and M.A. Sultan, “Structural Behaviour of High Strength Concrete Columns Exposed to Fire,” Proceedings, International Symposium on High Performance and Reactive Powder Concrete, Concrete Canada, Sherbrooke, Canada (1998). V.K.R. Kodur and M.A. Sultan, “Structural Behaviour of High Strength Concrete Columns Exposed to Fire,” Proceedings, International Symposium on High Performance and Reactive Powder Concrete, Concrete Canada, Sherbrooke, Canada (1998).
33.
Zurück zum Zitat U. Diederichs, U.M. Jumppanen, and U. Schneider, “High Temperature Properties and Spalling Behaviour of High Strength Concrete,” in Proceedings of Fourth Weimar Workshop on High Performance Concrete, HAB, Weimar, Germany (1995). U. Diederichs, U.M. Jumppanen, and U. Schneider, “High Temperature Properties and Spalling Behaviour of High Strength Concrete,” in Proceedings of Fourth Weimar Workshop on High Performance Concrete, HAB, Weimar, Germany (1995).
34.
Zurück zum Zitat Y. Anderberg, “Spalling Phenomenon of HPC and OC,” in International Workshop on Fire Performance of High Strength Concrete, NIST SP 919, NIST, Gaithersburg, MD (1997). Y. Anderberg, “Spalling Phenomenon of HPC and OC,” in International Workshop on Fire Performance of High Strength Concrete, NIST SP 919, NIST, Gaithersburg, MD (1997).
35.
Zurück zum Zitat Z.P. Bazant, “Analysis of Pore Pressure, Thermal Stress and Fracture in Rapidly Heated Concrete,” in International Workshop on Fire Performance of High Strength Concrete, NIST SP 919, NIST, Gaithersburg, MD (1997). Z.P. Bazant, “Analysis of Pore Pressure, Thermal Stress and Fracture in Rapidly Heated Concrete,” in International Workshop on Fire Performance of High Strength Concrete, NIST SP 919, NIST, Gaithersburg, MD (1997).
36.
Zurück zum Zitat A.N. Noumowe, P. Clastres, G. Debicki, and J.-L. Costaz, “Thermal Stresses and Water Vapor Pressure of High Performance Concrete at High Temperature,” Proceedings, Fourth International Symposium on Utilization of High-Strength/High-Performance Concrete, Paris, France (1996). A.N. Noumowe, P. Clastres, G. Debicki, and J.-L. Costaz, “Thermal Stresses and Water Vapor Pressure of High Performance Concrete at High Temperature,” Proceedings, Fourth International Symposium on Utilization of High-Strength/High-Performance Concrete, Paris, France (1996).
37.
Zurück zum Zitat J.A. Purkiss, Fire Safety Engineering Design of Structures, Butterworth Heinemann, Bodmin, Cornwall, UK (1996). J.A. Purkiss, Fire Safety Engineering Design of Structures, Butterworth Heinemann, Bodmin, Cornwall, UK (1996).
38.
Zurück zum Zitat E.L. Schaffer, “Charring Rate of Selected Woods—Transverse to Grain,” FPL 69, U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI (1967). E.L. Schaffer, “Charring Rate of Selected Woods—Transverse to Grain,” FPL 69, U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI (1967).
39.
Zurück zum Zitat B.F.W. Rogowski, “Charring of Timber in Fire Tests,” in Symposium No. 3 Fire and Structural Use of Timber in Buildings, HMSO, London (1969). B.F.W. Rogowski, “Charring of Timber in Fire Tests,” in Symposium No. 3 Fire and Structural Use of Timber in Buildings, HMSO, London (1969).
40.
Zurück zum Zitat N. Bénichou and M.A. Sultan, “Fire Resistance of Lightweight Wood Frame Assemblies: State-of-the-Art Report,” IR 776, IRC, National Research Council of Canada, Ottawa (1999). N. Bénichou and M.A. Sultan, “Fire Resistance of Lightweight Wood Frame Assemblies: State-of-the-Art Report,” IR 776, IRC, National Research Council of Canada, Ottawa (1999).
41.
Zurück zum Zitat S. Hadvig, Charring of Wood in Building Fires—Practice, Theory, Instrumentation, Measurements, Laboratory of Heating and Air-Conditioning, Technical University of Denmark, Lyngby, Denmark (1981). S. Hadvig, Charring of Wood in Building Fires—Practice, Theory, Instrumentation, Measurements, Laboratory of Heating and Air-Conditioning, Technical University of Denmark, Lyngby, Denmark (1981).
42.
Zurück zum Zitat E. Mikkola, “Charring of Wood,” Report 689, Fire Technology Laboratory, Technical Research Centre of Finland, Espoo (1990). E. Mikkola, “Charring of Wood,” Report 689, Fire Technology Laboratory, Technical Research Centre of Finland, Espoo (1990).
43.
Zurück zum Zitat Guide for Determining the Fire Endurance of Concrete Elements, ACI-216–89, American Concrete Institute, Detroit, MI (1989). Guide for Determining the Fire Endurance of Concrete Elements, ACI-216–89, American Concrete Institute, Detroit, MI (1989).
44.
Zurück zum Zitat I.D. Bennetts, Report No. MRL/PS23/81/001, BHP Melbourne Research Laboratories, Clayton, Australia (1981). I.D. Bennetts, Report No. MRL/PS23/81/001, BHP Melbourne Research Laboratories, Clayton, Australia (1981).
45.
Zurück zum Zitat U. Schneider (ed.), Properties of Materials at High Temperatures—Concrete, Kassel University, Kassel, Germany (1985). U. Schneider (ed.), Properties of Materials at High Temperatures—Concrete, Kassel University, Kassel, Germany (1985).
46.
Zurück zum Zitat Y. Anderberg (ed.), Properties of Materials at High Temperatures—Steel, Lund University, Lund, Sweden (1983). Y. Anderberg (ed.), Properties of Materials at High Temperatures—Steel, Lund University, Lund, Sweden (1983).
47.
Zurück zum Zitat F. Birch and H. Clark, American Journal of Science, 238, p. 542 (1940). F. Birch and H. Clark, American Journal of Science, 238, p. 542 (1940).
48.
Zurück zum Zitat T.Z. Harmathy and W.W. Stanzak, in ASTM STP464, American Society for Testing and Materials, Philadelphia (1970). T.Z. Harmathy and W.W. Stanzak, in ASTM STP464, American Society for Testing and Materials, Philadelphia (1970).
49.
Zurück zum Zitat Y. Anderberg, “Mechanical Properties of Reinforcing Steel at Elevated Temperatures,” Tekniska Meddelande, 36, Sweden (1978). Y. Anderberg, “Mechanical Properties of Reinforcing Steel at Elevated Temperatures,” Tekniska Meddelande, 36, Sweden (1978).
50.
Zurück zum Zitat “European Recommendations for the Fire Safety of Steel Structures,” European Convention for Construction Steelwork, Tech. Comm. 3, Elsevier, New York (1983). “European Recommendations for the Fire Safety of Steel Structures,” European Convention for Construction Steelwork, Tech. Comm. 3, Elsevier, New York (1983).
51.
Zurück zum Zitat Eurocode 3, Design of steel structures, Part 1-2: General rules-structural fire design, Document CEN, European Committee for Standardization, UK (2005). Eurocode 3, Design of steel structures, Part 1-2: General rules-structural fire design, Document CEN, European Committee for Standardization, UK (2005).
52.
Zurück zum Zitat T. Twilt, “Stress-Strain Relationships of Reinforcing Structural Steel at Elevated Temperatures, Analysis of Various Options and European Proposal,” TNO-Rep. BI-91-015, TNO Build. and Constr. Res., Delft, Netherlands (1991). T. Twilt, “Stress-Strain Relationships of Reinforcing Structural Steel at Elevated Temperatures, Analysis of Various Options and European Proposal,” TNO-Rep. BI-91-015, TNO Build. and Constr. Res., Delft, Netherlands (1991).
53.
Zurück zum Zitat K.W. Poh, “General Stress-Strain Equation,” ASCE Journal of Materials in Civil Engineering, Dec. (1997). K.W. Poh, “General Stress-Strain Equation,” ASCE Journal of Materials in Civil Engineering, Dec. (1997).
54.
Zurück zum Zitat K.W. Poh, “Stress-Strain-Temperature Relationship for Structural Steel,” ASCE Journal of Materials in Civil Engineering, Oct. (2001). K.W. Poh, “Stress-Strain-Temperature Relationship for Structural Steel,” ASCE Journal of Materials in Civil Engineering, Oct. (2001).
55.
Zurück zum Zitat J.T. Gerlich, P.C.R. Collier, and A.H. Buchanan, “Design of Light Steel-Framed Walls for Fire Resistance,” Fire and Materials, 20, 2 (1996).CrossRef J.T. Gerlich, P.C.R. Collier, and A.H. Buchanan, “Design of Light Steel-Framed Walls for Fire Resistance,” Fire and Materials, 20, 2 (1996).CrossRef
56.
Zurück zum Zitat G.Q. Li, S.C. Jiang, and Y.Z. Yin, “Experimental studies on the properties of constructional steel at elevated temperatures.” J. Struct. Eng., 129, 12, pp. 1717–1721 (2003). G.Q. Li, S.C. Jiang, and Y.Z. Yin, “Experimental studies on the properties of constructional steel at elevated temperatures.” J. Struct. Eng., 129, 12, pp. 1717–1721 (2003).
57.
Zurück zum Zitat BS 5950, “Structural Use of Steelwork in Building,” Part 8, in Code of Practice for Fire Resistant Design, British Standards Institution, London (2003). BS 5950, “Structural Use of Steelwork in Building,” Part 8, in Code of Practice for Fire Resistant Design, British Standards Institution, London (2003).
58.
Zurück zum Zitat W. Wang, L. Bing and V.K.R. Kodur, “Effect of temperature on strength and elastic modulus of high strength steel”, in Press: ASCE Journal of Materials in Civil Engineering, pp. 1–24 (2012). W. Wang, L. Bing and V.K.R. Kodur, “Effect of temperature on strength and elastic modulus of high strength steel”, in Press: ASCE Journal of Materials in Civil Engineering, pp. 1–24 (2012).
59.
Zurück zum Zitat V.K.R. Kodur and W. Khaliq, “Effect of temperature on thermal and mechanical properties of steel bolts”, ASCE Journal of Materials in Civil Engineering, 24, 6, pp. 765–774 (2012).CrossRef V.K.R. Kodur and W. Khaliq, “Effect of temperature on thermal and mechanical properties of steel bolts”, ASCE Journal of Materials in Civil Engineering, 24, 6, pp. 765–774 (2012).CrossRef
60.
Zurück zum Zitat J.T. Gerlich, “Design of Loadbearing Light Steel Frame Walls for Fire Resistance,” Fire Engineering Research Report 95/3, University of Canterbury, New Zealand (1995). J.T. Gerlich, “Design of Loadbearing Light Steel Frame Walls for Fire Resistance,” Fire Engineering Research Report 95/3, University of Canterbury, New Zealand (1995).
61.
Zurück zum Zitat P. Makelainen and K. Miller, Mechanical Properties of Cold-Formed Galvanized Sheet Steel Z32 at Elevated Temperatures, Helsinki University of Technology, Finland (1983). P. Makelainen and K. Miller, Mechanical Properties of Cold-Formed Galvanized Sheet Steel Z32 at Elevated Temperatures, Helsinki University of Technology, Finland (1983).
62.
Zurück zum Zitat F. Alfawakhiri, M.A. Sultan, and D.H. MacKinnon, “Fire Resistance of Loadbearing Steel-Stud Walls Protected with Gypsum Board: A Review,” Fire Technology, 35, 4 (1999).CrossRef F. Alfawakhiri, M.A. Sultan, and D.H. MacKinnon, “Fire Resistance of Loadbearing Steel-Stud Walls Protected with Gypsum Board: A Review,” Fire Technology, 35, 4 (1999).CrossRef
63.
Zurück zum Zitat T.Z. Harmathy and J.E. Berndt, Journal of the American Concrete Institute, 63, p. 93 (1966). T.Z. Harmathy and J.E. Berndt, Journal of the American Concrete Institute, 63, p. 93 (1966).
64.
Zurück zum Zitat C.R. Cruz, Journal, PCA Research and Development Laboratories, 8, p. 37 (1966). C.R. Cruz, Journal, PCA Research and Development Laboratories, 8, p. 37 (1966).
65.
Zurück zum Zitat M.S. Abrams, in ACI SP 25, American Concrete Institute, Detroit, MI (1971). M.S. Abrams, in ACI SP 25, American Concrete Institute, Detroit, MI (1971).
66.
Zurück zum Zitat C.R. Cruz, Journal, PCA Research and Development Laboratories, 10, p. 36 (1968). C.R. Cruz, Journal, PCA Research and Development Laboratories, 10, p. 36 (1968).
67.
Zurück zum Zitat J.C. MareÂchal, in ACI SP 34, American Concrete Institute, Detroit, MI (1972). J.C. MareÂchal, in ACI SP 34, American Concrete Institute, Detroit, MI (1972).
68.
Zurück zum Zitat H. Gross, Nuclear Engineering and Design, 32, p. 129 (1975). H. Gross, Nuclear Engineering and Design, 32, p. 129 (1975).
69.
Zurück zum Zitat U. Schneider, U. Diedrichs, W. Rosenberger, and R. Weiss, Sonderforschungsbereich 148, Arbeitsbericht 1978–1980, Teil II, B 3, Technical University of Braunschweig, Germany (1980). U. Schneider, U. Diedrichs, W. Rosenberger, and R. Weiss, Sonderforschungsbereich 148, Arbeitsbericht 1978–1980, Teil II, B 3, Technical University of Braunschweig, Germany (1980).
70.
Zurück zum Zitat U. Diederichs and U. Schneider, “Bond Strength at High Temperatures,” Magazine of Concrete Research, 33, 115, pp. 75–84 (1981).CrossRef U. Diederichs and U. Schneider, “Bond Strength at High Temperatures,” Magazine of Concrete Research, 33, 115, pp. 75–84 (1981).CrossRef
71.
Zurück zum Zitat V.K.R. Kodur, “Fibre-Reinforced Concrete for Enhancing the Structural Fire Resistance of Columns,” ACI-SP (2000). V.K.R. Kodur, “Fibre-Reinforced Concrete for Enhancing the Structural Fire Resistance of Columns,” ACI-SP (2000).
72.
Zurück zum Zitat A. Bilodeau, V.M. Malhotra, and G.C. Hoff, “Hydrocarbon Fire Resistance of High Strength Normal Weight and Light Weight Concrete Incorporating Polypropylene Fibres,” in Proceedings, International Symposium on High Performance and Reactive Powder Concrete, Sherbrooke, Canada (1998). A. Bilodeau, V.M. Malhotra, and G.C. Hoff, “Hydrocarbon Fire Resistance of High Strength Normal Weight and Light Weight Concrete Incorporating Polypropylene Fibres,” in Proceedings, International Symposium on High Performance and Reactive Powder Concrete, Sherbrooke, Canada (1998).
73.
Zurück zum Zitat V.K.R. Kodur and T.T. Lie, “Fire Resistance of Fibre-Reinforced Concrete,” in Fibre Reinforced Concrete: Present and the Future, Canadian Society of Civil Engineers, Montreal (1997). V.K.R. Kodur and T.T. Lie, “Fire Resistance of Fibre-Reinforced Concrete,” in Fibre Reinforced Concrete: Present and the Future, Canadian Society of Civil Engineers, Montreal (1997).
74.
Zurück zum Zitat U.-M. Jumppanen, U. Diederichs, and K. Heinrichsmeyer, “Materials Properties of F-Concrete at High Temperatures,” VTT Research Report No. 452, Technical Research Centre of Finland, Espoo (1986). U.-M. Jumppanen, U. Diederichs, and K. Heinrichsmeyer, “Materials Properties of F-Concrete at High Temperatures,” VTT Research Report No. 452, Technical Research Centre of Finland, Espoo (1986).
75.
Zurück zum Zitat J.A. Purkiss, “Steel Fibre-Reinforced Concrete at Elevated Temperatures,” International Journal of Cement Composites and Light Weight Concrete, 6, 3 (1984).CrossRef J.A. Purkiss, “Steel Fibre-Reinforced Concrete at Elevated Temperatures,” International Journal of Cement Composites and Light Weight Concrete, 6, 3 (1984).CrossRef
76.
Zurück zum Zitat T.T. Lie and V.K.R. Kodur, “Effect of Temperature on Thermal and Mechanical Properties of Steel Fibre-Reinforced Concrete,” IR 695, IRC, National Research Council of Canada, Ottawa (1995). T.T. Lie and V.K.R. Kodur, “Effect of Temperature on Thermal and Mechanical Properties of Steel Fibre-Reinforced Concrete,” IR 695, IRC, National Research Council of Canada, Ottawa (1995).
77.
Zurück zum Zitat V.K.R. Kodur and R. McGrath, “Effect of Silica Fume and Confinement on Fire Performance of High Strength Concrete Columns,” Canadian Journal of Civil Engineering, p. 24 (2006). V.K.R. Kodur and R. McGrath, “Effect of Silica Fume and Confinement on Fire Performance of High Strength Concrete Columns,” Canadian Journal of Civil Engineering, p. 24 (2006).
78.
Zurück zum Zitat F.P. Cheng, V.K.R. Kodur, and T.C. Wang, “Stress-Strain Curves for High Strength Concrete at Elevated Temperatures,” ASCE Journal of Materials Engineering, 16, 1, pp. 84–90 (2004).CrossRef F.P. Cheng, V.K.R. Kodur, and T.C. Wang, “Stress-Strain Curves for High Strength Concrete at Elevated Temperatures,” ASCE Journal of Materials Engineering, 16, 1, pp. 84–90 (2004).CrossRef
79.
Zurück zum Zitat V.K.R. Kodur, T.C. Wang, and F.P. Cheng, “Predicting the Fire Resistance Behaviour of High Strength Concrete Columns,” Cements and Concrete Composites Journal, 26, 2, pp. 141–153 (2003).CrossRef V.K.R. Kodur, T.C. Wang, and F.P. Cheng, “Predicting the Fire Resistance Behaviour of High Strength Concrete Columns,” Cements and Concrete Composites Journal, 26, 2, pp. 141–153 (2003).CrossRef
80.
Zurück zum Zitat V.K.R. Kodur and M.A. Sultan, “Thermal Properties of High Strength Concrete at Elevated Temperatures,” CANMET-ACI-JCI International Conference, ACI SP-170, Tokushima, Japan, American Concrete Institute, Detroit, MI (1998). V.K.R. Kodur and M.A. Sultan, “Thermal Properties of High Strength Concrete at Elevated Temperatures,” CANMET-ACI-JCI International Conference, ACI SP-170, Tokushima, Japan, American Concrete Institute, Detroit, MI (1998).
81.
Zurück zum Zitat V.K.R. Kodur and M.A. Sultan, “Effect of Temperature on Thermal Properties of High Strength Concrete,” ASCE Journal of Materials in Civil Engineering, 15, 8, pp. 101–108 (2003).CrossRef V.K.R. Kodur and M.A. Sultan, “Effect of Temperature on Thermal Properties of High Strength Concrete,” ASCE Journal of Materials in Civil Engineering, 15, 8, pp. 101–108 (2003).CrossRef
82.
Zurück zum Zitat V.K.R. Kodur and W. Khaliq, “Effect of temperature on thermal properties of different types of high strength concrete”, ASCE Journal of Materials in Civil Engineering, 23, 6, pp. 793–801 (2011).CrossRef V.K.R. Kodur and W. Khaliq, “Effect of temperature on thermal properties of different types of high strength concrete”, ASCE Journal of Materials in Civil Engineering, 23, 6, pp. 793–801 (2011).CrossRef
83.
Zurück zum Zitat V.K.R. Kodur, “Spalling in High Strength Concrete Exposed to Fire—Concerns, Causes, Critical Parameters and Cures,” in Proceedings: ASCE Structures Congress, Philadelphia (2000). V.K.R. Kodur, “Spalling in High Strength Concrete Exposed to Fire—Concerns, Causes, Critical Parameters and Cures,” in Proceedings: ASCE Structures Congress, Philadelphia (2000).
84.
Zurück zum Zitat V.K.R. Kodur, “Guidelines for Fire Resistance Design of High Strength Concrete Columns,” Journal of Fire Protection Engineering, 15, 2, pp. 93–106 (2005).CrossRef V.K.R. Kodur, “Guidelines for Fire Resistance Design of High Strength Concrete Columns,” Journal of Fire Protection Engineering, 15, 2, pp. 93–106 (2005).CrossRef
85.
Zurück zum Zitat J.W. McBurney and C.E. Lovewell, ASTM—Proceedings of the Thirty-Sixth Annual Meeting, Vol. 33 (II), American Society for Testing and Materials, Detroit, MI, p. 636 (1933). J.W. McBurney and C.E. Lovewell, ASTM—Proceedings of the Thirty-Sixth Annual Meeting, Vol. 33 (II), American Society for Testing and Materials, Detroit, MI, p. 636 (1933).
86.
Zurück zum Zitat Wood Handbook: Wood as an Engineering Material, Agriculture Handbook No. 72, Forest Products Laboratory, U.S. Government Printing Office, Washington, DC (1974). Wood Handbook: Wood as an Engineering Material, Agriculture Handbook No. 72, Forest Products Laboratory, U.S. Government Printing Office, Washington, DC (1974).
87.
Zurück zum Zitat C.C. Gerhards, Wood & Fiber, 14, p. 4 (1981). C.C. Gerhards, Wood & Fiber, 14, p. 4 (1981).
88.
Zurück zum Zitat E.L. Schaffer, Wood & Fiber, 9, p. 145 (1977). E.L. Schaffer, Wood & Fiber, 9, p. 145 (1977).
89.
Zurück zum Zitat E.L. Schaffer, Research Paper FPL 450, U.S. Department of Agriculture, Forest Products Lab., Madison, WI (1984). E.L. Schaffer, Research Paper FPL 450, U.S. Department of Agriculture, Forest Products Lab., Madison, WI (1984).
90.
Zurück zum Zitat “Structural Fire Design,” Part 1.2, in Eurocode 5, CEN, Brussels, Belgium (1995). “Structural Fire Design,” Part 1.2, in Eurocode 5, CEN, Brussels, Belgium (1995).
91.
Zurück zum Zitat F.F. Wangaard, Section 29, in Engineering Materials Handbook (C.L. Mantell, ed.), McGraw-Hill, New York (1958). F.F. Wangaard, Section 29, in Engineering Materials Handbook (C.L. Mantell, ed.), McGraw-Hill, New York (1958).
92.
Zurück zum Zitat V.K.R. Kodur, J. Fike, R. Fike, and M. Tabaddoor, “Factors governing fire resistance of engineered wood I-joists”, Proceedings of the Seventh International Conference on Structures in Fire, Zurich, Switzerland, pp. 417–426 (2012). V.K.R. Kodur, J. Fike, R. Fike, and M. Tabaddoor, “Factors governing fire resistance of engineered wood I-joists”, Proceedings of the Seventh International Conference on Structures in Fire, Zurich, Switzerland, pp. 417–426 (2012).
93.
Zurück zum Zitat V.K.R. Kodur and D. Baingo, “Fire Resistance of FRP Reinforced Concrete Slabs,” IR 758, IRC, National Research Council of Canada, Ottawa (1998). V.K.R. Kodur and D. Baingo, “Fire Resistance of FRP Reinforced Concrete Slabs,” IR 758, IRC, National Research Council of Canada, Ottawa (1998).
94.
Zurück zum Zitat V.K.R. Kodur, “Fire Resistance Requirements for FRP Structural Members,” Proceedings—Vol I, 1999 CSCE Annual Conference, Canadian Society of Civil Engineers, Regina, Saskatchewan (1999). V.K.R. Kodur, “Fire Resistance Requirements for FRP Structural Members,” Proceedings—Vol I, 1999 CSCE Annual Conference, Canadian Society of Civil Engineers, Regina, Saskatchewan (1999).
95.
Zurück zum Zitat T.S. Gates, “Effects of Elevated Temperature on the Viscoelastic Modeling of Graphite/Polymeric Composites,” NASA Technical Memorandum 104160, NASA, Langley Research Center, Hampton, VA (1991). T.S. Gates, “Effects of Elevated Temperature on the Viscoelastic Modeling of Graphite/Polymeric Composites,” NASA Technical Memorandum 104160, NASA, Langley Research Center, Hampton, VA (1991).
96.
Zurück zum Zitat Y.C. Wang and V.K.R. Kodur, “Variation of Strength and Stiffness of Fibre Reinforced Polymer Reinforcing Bars with Temperature,” Cement and Concrete Composites, 27, pp. 864–874 (2005).CrossRef Y.C. Wang and V.K.R. Kodur, “Variation of Strength and Stiffness of Fibre Reinforced Polymer Reinforcing Bars with Temperature,” Cement and Concrete Composites, 27, pp. 864–874 (2005).CrossRef
97.
Zurück zum Zitat SK. Foster, “High Temperature Residual Performance of Externally-Bonded FRP Systems for Concrete,” MSc Thesis, Kingston, Canada, Department of Civil Engineering, Queen’s University (2006). SK. Foster, “High Temperature Residual Performance of Externally-Bonded FRP Systems for Concrete,” MSc Thesis, Kingston, Canada, Department of Civil Engineering, Queen’s University (2006).
98.
Zurück zum Zitat A. Katz and N. Berman, “Modeling the Effect of High Temperature on the Bond of FRP Reinforcing Bars to Concrete,” Cement and Concrete Composites Journal, 22, pp. 433–443 (2000).CrossRef A. Katz and N. Berman, “Modeling the Effect of High Temperature on the Bond of FRP Reinforcing Bars to Concrete,” Cement and Concrete Composites Journal, 22, pp. 433–443 (2000).CrossRef
99.
Zurück zum Zitat A. Katz, N. Berman, and L.C. Bank, “Effect of High Temperature on the Bond Strength of FRP Rebars,” Journal of Composites for Construction, 3, 2, pp. 73–81 (1999).CrossRef A. Katz, N. Berman, and L.C. Bank, “Effect of High Temperature on the Bond Strength of FRP Rebars,” Journal of Composites for Construction, 3, 2, pp. 73–81 (1999).CrossRef
100.
Zurück zum Zitat A. Sumida, T. Fujisaki, K. Watanabe, and T. Kato, “Heat Resistance of Continuous Fiber Reinforced Plastic Rods,” Proceedings, Fifth Annual Symposium on Fibre-Reinforced-Plastic Reinforcement for Concrete Structures, Thomas Telford, London, pp. 557–565 (2001). A. Sumida, T. Fujisaki, K. Watanabe, and T. Kato, “Heat Resistance of Continuous Fiber Reinforced Plastic Rods,” Proceedings, Fifth Annual Symposium on Fibre-Reinforced-Plastic Reinforcement for Concrete Structures, Thomas Telford, London, pp. 557–565 (2001).
101.
Zurück zum Zitat N. Galati, B. Vollintine, A. Nanni, L.R. Dharani, and M.A. Aiello, “Thermal Effects on Bond Between FRP Rebars and Concrete,” Proceedings, Advanced Polymer Composites for Structural Applications in Construction, Woodhead Publishing Ltd., Cambridge, UK, pp. 501–508 (2004). N. Galati, B. Vollintine, A. Nanni, L.R. Dharani, and M.A. Aiello, “Thermal Effects on Bond Between FRP Rebars and Concrete,” Proceedings, Advanced Polymer Composites for Structural Applications in Construction, Woodhead Publishing Ltd., Cambridge, UK, pp. 501–508 (2004).
102.
Zurück zum Zitat V.R. Kodur, L.A. Bisby, and M.F. Green, “Experimental Evaluation of the Fire Behavior of Fibre-Reinforced-Polymer-Strengthened Reinforced Concrete Columns,” Fire Safety Journal, 41, 7, pp. 547–557 (2005).CrossRef V.R. Kodur, L.A. Bisby, and M.F. Green, “Experimental Evaluation of the Fire Behavior of Fibre-Reinforced-Polymer-Strengthened Reinforced Concrete Columns,” Fire Safety Journal, 41, 7, pp. 547–557 (2005).CrossRef
103.
Zurück zum Zitat V.R. Kodur and L.A. Bisby, “Evaluation of Fire Endurance of Concrete Slabs Reinforced with FRP Bars,” ASCE Journal of Structural Engineering, 131, 1, pp. 34–43 (2005).CrossRef V.R. Kodur and L.A. Bisby, “Evaluation of Fire Endurance of Concrete Slabs Reinforced with FRP Bars,” ASCE Journal of Structural Engineering, 131, 1, pp. 34–43 (2005).CrossRef
104.
Zurück zum Zitat Y.C. Wang, P.M.H. Wong, and V.K.R. Kodur, “An Experimental Study of Mechanical Properties of FRP and Steel Reinforcing Bars at Elevated Temperatures,” Composite Structures, 80, 1, pp. 131–140 (2007).CrossRef Y.C. Wang, P.M.H. Wong, and V.K.R. Kodur, “An Experimental Study of Mechanical Properties of FRP and Steel Reinforcing Bars at Elevated Temperatures,” Composite Structures, 80, 1, pp. 131–140 (2007).CrossRef
105.
Zurück zum Zitat B. Yu, and V.K.R. Kodur, “Effect of Temperature on Strength and Stiffness Properties of Near-Surface Mounted FRP Reinforcement,” Journal of Composites, Part B: Engineering, 58, pp. 510–517 (2014). B. Yu, and V.K.R. Kodur, “Effect of Temperature on Strength and Stiffness Properties of Near-Surface Mounted FRP Reinforcement,” Journal of Composites, Part B: Engineering, 58, pp. 510–517 (2014).
106.
Zurück zum Zitat T.Z. Harmathy, in ASTM STP301, American Society for Testing and Materials, Philadelphia (1961). T.Z. Harmathy, in ASTM STP301, American Society for Testing and Materials, Philadelphia (1961).
107.
Zurück zum Zitat R.R. West and W.J. Sutton, Journal of the American Ceramic Society, 37, p. 221 (1954). R.R. West and W.J. Sutton, Journal of the American Ceramic Society, 37, p. 221 (1954).
108.
Zurück zum Zitat P. Ljunggren, Journal of the American Ceramic Society, 43, p. 227 (1960). P. Ljunggren, Journal of the American Ceramic Society, 43, p. 227 (1960).
109.
Zurück zum Zitat M.A. Sultan, “A Model for Predicting Heat Transfer Through Noninsulated Unloaded Steel-Stud Gypsum Board Wall Assemblies Exposed to Fire,” Fire Technology, 32, 3 (1996).CrossRef M.A. Sultan, “A Model for Predicting Heat Transfer Through Noninsulated Unloaded Steel-Stud Gypsum Board Wall Assemblies Exposed to Fire,” Fire Technology, 32, 3 (1996).CrossRef
110.
Zurück zum Zitat “Gypsum Board: Typical Mechanical and Physical Properties,” GA-235–98, Gypsum Association, Washington, DC (1998). “Gypsum Board: Typical Mechanical and Physical Properties,” GA-235–98, Gypsum Association, Washington, DC (1998).
111.
Zurück zum Zitat M.A. Sultan, “Effect of Insulation in the Wall Cavity on the Fire Resistance Rating of Full-Scale Asymmetrical (1 × 2) Gypsum Board Protected Wall Assemblies,” in Proceedings of the International Conference on Fire Research and Engineering, Orlando, FL, SFPE, Boston (1995). M.A. Sultan, “Effect of Insulation in the Wall Cavity on the Fire Resistance Rating of Full-Scale Asymmetrical (1 × 2) Gypsum Board Protected Wall Assemblies,” in Proceedings of the International Conference on Fire Research and Engineering, Orlando, FL, SFPE, Boston (1995).
112.
Zurück zum Zitat A.H. Buchanan, Structural Design for Fire Safety, John Wiley & Sons Ltd., Chichester, UK (2002). A.H. Buchanan, Structural Design for Fire Safety, John Wiley & Sons Ltd., Chichester, UK (2002).
113.
Zurück zum Zitat V.K.R. Kodur, M. Dwaikat and R. Fike, “High-temperature properties of steel for fire resistance modeling of structures,” Journal of Materials in Civil Engineering, 22, 5, pp. 423–434 (2010).CrossRef V.K.R. Kodur, M. Dwaikat and R. Fike, “High-temperature properties of steel for fire resistance modeling of structures,” Journal of Materials in Civil Engineering, 22, 5, pp. 423–434 (2010).CrossRef
114.
Zurück zum Zitat V.K.R. Kodur and A. Shakya, “Effect of temperature on thermal properties of fire insulation”, Fire Safety Journal, 61, pp. 314–323 (2013). V.K.R. Kodur and A. Shakya, “Effect of temperature on thermal properties of fire insulation”, Fire Safety Journal, 61, pp. 314–323 (2013).
115.
Zurück zum Zitat S. Park, S.L. Manzello, D.P. Bentz, and T. Mizukami, “Determining thermal properties of gypsum board at elevated temperatures”, Fire and Materials (2009). S. Park, S.L. Manzello, D.P. Bentz, and T. Mizukami, “Determining thermal properties of gypsum board at elevated temperatures”, Fire and Materials (2009).
Metadaten
Titel
Properties of Building Materials
verfasst von
V. K. R. Kodur
T. Z. Harmathy
Copyright-Jahr
2016
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-2565-0_9