Skip to main content

Abstract

Although less well-developed compared to anaerobic sustainable landfilling technologies, the addition of air as an extensive or just a portion of sustainable landfilling operations provides a series of distinct potential benefits compared to anaerobic systems. The fundamental system configuration and design approaches for aerobic systems are provided, along with operation, monitoring, and control techniques. Given the unique nature and relatively limited experience with full-scale aerobic systems (compared to anaerobic), a special series of case studies from Asia, Europe, and North America are provided to provide examples of how aerobic technologies can be incorporated into sustainable landfilling operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ATSDR (2001) Landfill Gas Primer: an overview for environmental health professionals, Nov 2001

    Google Scholar 

  • Bass DH, Hastings NA, Brown RA (2000) Performance of air sparging systems: a review of case studies. J Hazard Mater 72(2–3):101–119

    Article  CAS  Google Scholar 

  • Berge ND, Reinhart DR, Townsend TG (2005) The fate of nitrogen in bioreactor landfills. Crit Rev Environ Sci Technol 35:365–399

    Article  CAS  Google Scholar 

  • Berge ND, Reinhart DR, Dietz J, Townsend T (2006) In situ ammonia removal in bioreactor landfill leachate. Waste Manag 26:334–343

    Article  CAS  Google Scholar 

  • Berge ND, Reinhart DR, Dietz JD, Townsend T (2007) The impact of temperature and gas-phase oxygen on kinetics of in situ ammonia removal in bioreactor landfill leachate. Water Res 41:1907–1914

    Article  CAS  Google Scholar 

  • Bilgili MS, Demir A, Özkaya B (2007) Influence of leachate recirculation on aerobic and anaerobic decomposition of solid wastes. J Hazard Mater 143:177–183

    Article  CAS  Google Scholar 

  • Boersma PM, Diontek KR, Newman PAB (1995) Sparging effectiveness for groundwater restoration. In: Hinchee RE, Miller RN, Johnson PC (eds) In situ aeration: air sparging, bioventing, and related processes. Batelle, Columbus, pp 39–46

    Google Scholar 

  • Bolton N (1995) The handbook of landfill operations. Blue Ridge Services, Atascadero

    Google Scholar 

  • Chong T, Matsufuji Y, Hassan M (2005) Implementation of the semi-aerobic landfill system (Fukuoka method) in developing countries: a Malaysia cost analysis. Waste Manag 25:702–711

    Article  Google Scholar 

  • Code of Federal Regulations (1996) New source performance standards for municipal solid waste landfills. 40 CFR 60 Subpart WWW, 12 Mar 1996

    Google Scholar 

  • Coward HF, Hartwell JJ (1926) Extinction of methane flames by diluent gases. J Chem Soc 129:1522–1532

    Article  Google Scholar 

  • Coward HF, Jones GW (1952) Limits of flammability of gases and vapors. Bulletin 503, U.S. Bureau of Mines

    Google Scholar 

  • FEMA (2002) Landfill fires, their magnitude, characteristics, and mitigation. FA-225, May 2002

    Google Scholar 

  • Hansen DL, Chandwani A, Shaw P (2002) Sullivan County Landfill (Monticello, New York)—New York State Energy Research and Development Authority landfill biostabilization study, final report 03-03

    Google Scholar 

  • Haug R (1993) The practical handbook of compost engineering. CRC, Boca Raton

    Google Scholar 

  • Heyer K-U, Hupe K, Ritzkowski M, Stegmann R (2005) Pollutant release and pollutant reduction—impact of the aeration of landfills. Waste Manag 25:353–359

    Article  CAS  Google Scholar 

  • Hogland W, Marques M (2003) Physical, biological and chemical processes during storage and spontaneous combustion of waste fuel. Resour Conserv Recyc 40:53–69

    Article  Google Scholar 

  • Hudak PF (2000) Principles of hydrogeology. CRC, Boca Raton

    Google Scholar 

  • Hudgins M, Harper S (1999) Operational characteristics of two aerobic landfill systems. In: Proceedings of the seventh international waste management and landfill symposium, Sardinia

    Google Scholar 

  • Jain P, Powell J, Townsend T, Reinhart D (2005) Air permeability of waste in a municipal solid waste landfill. J Environ Eng 131:1565–1573

    Article  CAS  Google Scholar 

  • Johnson W, Baker J (1999) Operation characteristics and enhanced bioreduction of municipal waste landfill mass by a controlled aerobic process. In: Fourth annual SWANA landfill symposium, Denver

    Google Scholar 

  • Johnson RL, Johnson PC, McWhorter BB, Hinchee RE, Goodman I (1993) An overview of in situ air sparging. Ground Water Monit Rev 13(4):127–135

    Article  CAS  Google Scholar 

  • Jung Y, Imhoff PT, Augenstein D, Yazdani R (2011) Mitigating methane emissions an air intrusion in heterogeneous landfills with a high permeability layer. Waste Manag 31:1049–1058

    Article  CAS  Google Scholar 

  • Kim H, Jang Y-C, Townsend T (2011) The behavior and long-term fate of metals in simulated landfill bioreactors under aerobic and anaerobic conditions. J Hazard Mater 194:369–377

    Article  CAS  Google Scholar 

  • Ko JH, Powell J, Jain P, Kim H, Townsend T, Reinhart D (2013) Case study of controlled air addition into landfilled municipal solid waste: design, operation, and control. J Hazard Toxic Radioact Waste 17:351–359

    Article  CAS  Google Scholar 

  • Leeson A, Johnson PC, Johnson RL, Vogel CM, Hinchee RE, Marley M, Peargin T, Bruce CL, Amerson IL, Coonfare CT, Gillespie RD, McWhorter DB (2002) Air sparging design paradigm. Battelle, Columbus

    Google Scholar 

  • Leikam K, Keyer K (1997) In-situ stabilization of completed landfills and old sites. In: Proceedings of the sixth Sardinia International Landfill Symposium, Cagliari

    Google Scholar 

  • Marley MC, Bruell CJ, Hopkins HH (1995) Air sparging technology: a practice update. In: Hinchee RE, Miller RN, Johnson PC (eds) In situ aeration: air sparging, bioventing, and related processes. Battelle, Columbus, pp 31–37

    Google Scholar 

  • Matsufuji Y, Hanashima M, Nagano S, Tanaka A (1993) Generation of greenhouse effect gases from different landfill types. Eng Geol 34:181–197

    Article  Google Scholar 

  • Matsufuji Y, Tanaka A, Hanashima M (2004) Biodegradation process of municipal solid waste by semi-aerobic landfill type. In: Proceedings of the first Korea-Japan Society of solid waste management, 87–94

    Google Scholar 

  • Merz RC, Stone R (1966) Sanitary landfill behavior in an aerobic environment. Public Works 97:67–70

    Google Scholar 

  • Moqbel SY (2009) Characterizing spontaneous fires in landfills. University of Central Florida, Orlando

    Google Scholar 

  • Onay T, Pohland FG (1998) In situ nitrogen management in controlled bioreactor landfills. Water Res 32:1383–1392

    Article  CAS  Google Scholar 

  • Palmisano AC, Barlaz MA (1996) Microbiology of solid waste, 1st edn. CRC, Boca Raton

    Google Scholar 

  • Powell J (2005) Trace gas quality, temperature control and extent of influence from air addition at a bioreactor landfill. University of Florida, Gainesville

    Google Scholar 

  • Powell J, Jain P, Kim H, Townsend T, Reinhart D (2006) Changes in landfill gas quality as a result of controlled air injection. Environ Sci Technol 40:1029–1034

    Article  CAS  Google Scholar 

  • Read AD, Hudgins M, Phillips P (2001) Perpetual landfilling through aeration of the waste mass; lessons from test cells in Georgia (USA). Waste Manag 21(7):617–629

    Article  CAS  Google Scholar 

  • Rich C, Gronow J, Voulvoulis N (2008) The potential for aeration of MSW landfills to accelerate completion. Waste Manag 28:1039–1048

    Article  CAS  Google Scholar 

  • Ritzkowski M, Stegmann R (2007) Controlling greenhouse gas emissions through landfill in situ aeration. Int J Green Gas Control 1:281–288

    Article  CAS  Google Scholar 

  • Ritzkowski M, Stegmann R (2010) Generating CO2-credits through landfill in situ aeration. Waste Manag 30:702–706

    Article  CAS  Google Scholar 

  • Ritzkowski M, Stegmann R (2012) Landfill aeration worldwide: concepts, indications and findings. Waste Manag 32:1411–1419

    Article  CAS  Google Scholar 

  • Ritzkowski M, Heyer K-U, Stegmann R (2006) Fundamental processes and implications during in situ aeration of old landfills. Waste Manag 26:356–372

    Article  CAS  Google Scholar 

  • Sartaj M, Ahmadifar M, Jashni K (2010) Assessment of in-situ aerobic treatment of municipal landfill leachate at laboratory scale. Iranian Journal of Science and Technology, Transaction B, Engineering, Vol 34, B1, 107–116

    Google Scholar 

  • Stessel RI, Murphy RJ (1992) A lysimeter study of the aerobic landfill concept. Waste Manag Res 10:485–503

    Article  CAS  Google Scholar 

  • Stone R, Gupta R (1970) Aerobic and anaerobic landfill stabilization process. J San Eng Div, Proceedings of the American Society of Civil Engineers, 96(SA 6):1399–1414

    Google Scholar 

  • Wu C, Shimaoka T, Nakayama H, Komiya T, Chai X, Hao Y (2014) Influence of aeration modes on leachate characteristic of landfills that adopt the aerobic-anaerobic landfill method. Waste Manag 34:101–111

    Article  CAS  Google Scholar 

  • Yang X, Beckmann D, Fiorenza S, Niedermeier C (2005) Field study of pulsed air sparging for remediation of petroleum hydrocarbon contaminated soil and groundwater. Environ Sci Technol 39(18):7279–7286

    Article  CAS  Google Scholar 

  • Yazdani R, Mostafid ME, Han B, Imhoff PT, Chiu P, Augenstein D, Kayhanian M, Tchobanoglous G (2010) Quantifying factors limiting aerobic degradation during aerobic bioreactor landfilling. Environ Sci Technol 44:6215–6220

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Townsend, T.G., Powell, J., Jain, P., Xu, Q., Tolaymat, T., Reinhart, D. (2015). Landfill Air Addition. In: Sustainable Practices for Landfill Design and Operation. Waste Management Principles and Practice. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2662-6_14

Download citation

Publish with us

Policies and ethics