Skip to main content

Identification and Characterization of Homing Peptides Using In Vivo Peptide Phage Display

  • Protocol
Cell-Penetrating Peptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1324))

Abstract

Each normal organ and pathological condition expresses a distinct set of molecules on their vasculature. These molecular signatures have been efficiently profiled using in vivo phage display. Several peptides homing to tumor blood vessels, lymphatic vessels, and/or tumor cells as well as to various normal organs have been isolated using this method. The in vivo screening of phage libraries has also revealed novel tissue-specific biomarkers of the normal and diseased vasculature. Tumor-homing peptides have been successfully used to target therapeutics and imaging agents to tumors. In vivo phage display has also been used in the identification of cell and/or tumor type-specific cell-penetrating peptides, which further facilitate the transmembrane delivery of various cargo molecules into cells. In this review we describe experimental setup for a combined ex vivo and in vivo screening procedure to select both conventional and cell-penetrating peptides homing to brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oh P, Li Y, Yu J, Durr E, Krasinska KM, Carver LA, Testa JE, Schnitzer JE (2004) Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 429:629–635

    Article  CAS  PubMed  Google Scholar 

  2. Ruoslahti E (2002) Specialization of tumour vasculature. Nat Rev Cancer 2:83–90

    Article  PubMed  Google Scholar 

  3. St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW (2000) Genes expressed in human tumor endothelium. Science 289:1197–1202

    Article  CAS  PubMed  Google Scholar 

  4. Pasqualini R, Ruoslahti E (1996) Organ targeting in vivo using phage display peptide libraries. Nature 380:364–366

    Article  CAS  PubMed  Google Scholar 

  5. Arap W, Haedicke W, Bernasconi M, Kain R, Rajotte D, Krajewski S, Ellerby HM, Bredesen DE, Pasqualini R, Ruoslahti E (2002) Targeting the prostate for destruction through a vascular address. Proc Natl Acad Sci U S A 99:1527–1531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Rajotte D, Arap W, Hagedorn M, Koivunen E, Pasqualini R, Ruoslahti E (1998) Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J Clin Invest 102:430–437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Zhang L, Hoffman JA, Ruoslahti E (2005) Molecular profiling of heart endothelial cells. Circulation 112:1601–1611

    Article  CAS  PubMed  Google Scholar 

  8. Burg MA, Pasqualini R, Arap W, Ruoslahti E, Stallcup WB (1999) NG2 proteoglycan-binding peptides target tumor neovasculature. Cancer Res 59:2869–2874

    CAS  PubMed  Google Scholar 

  9. Laakkonen P, Porkka K, Hoffman JA, Ruoslahti E (2002) A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nat Med 8:751–755

    CAS  PubMed  Google Scholar 

  10. Pasqualini R, Koivunen E, Ruoslahti E (1997) Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 15:542–546

    Article  CAS  PubMed  Google Scholar 

  11. Porkka K, Laakkonen P, Hoffman JA, Bernasconi M, Ruoslahti E (2002) A fragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo. Proc Natl Acad Sci U S A 99:7444–7449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Hoffman JA, Giraudo E, Singh M, Zhang L, Inoue M, Porkka K, Hanahan D, Ruoslahti E (2003) Progressive vascular changes in a transgenic mouse model of squamous cell carcinoma. Cancer Cell 4:383–391

    Article  CAS  PubMed  Google Scholar 

  13. Joyce JA, Laakkonen P, Bernasconi M, Bergers G, Ruoslahti E, Hanahan D (2003) Stage-specific vascular markers revealed by phage display in a mouse model of pancreatic islet tumorigenesis. Cancer Cell 4:393–403

    Article  CAS  PubMed  Google Scholar 

  14. Laakkonen P, Zhang L, Ruoslahti E (2008) Peptide targeting of lymph vessels. Annu N Y Acad Sci 1131:37–43

    Article  CAS  Google Scholar 

  15. Eriste E, Kurrikoff K, Suhorutsenko J, Oskolkov N, Copolovici DM, Jones S, Laakkonen P, Howl J, Langel U (2013) Peptide-based glioma-targeted drug delivery vector gHoPe2. Bioconjug Chem 24:305–313

    Article  CAS  PubMed  Google Scholar 

  16. Agemy L, Friedmann-Morvinski D, Kotamraju VR, Roth L, Sugahara KN, Girard OM, Mattrey RF, Verma IM, Ruoslahti E (2011) Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proc Natl Acad Sci U S A 108:17450–17455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Hyvonen M, Enback J, Huhtala T, Lammi J, Sihto H, Weisell J, Joensuu H, Rosenthal-Aizman K, El-Andaloussi S, Langel U, Narvanen A, Bergers G, Laakkonen P (2014) Novel target for peptide-based imaging and treatment of brain tumors. Mol Cancer Ther 13:996–1007

    Article  PubMed Central  PubMed  Google Scholar 

  18. Kinnari PJ, Hyvonen ML, Makila EM, Kaasalainen MH, Rivinoja A, Salonen JJ, Hirvonen JT, Laakkonen PM, Santos HA (2013) Tumour homing peptide-functionalized porous silicon nanovectors for cancer therapy. Biomaterials 34:9134–9141

    Article  CAS  PubMed  Google Scholar 

  19. Zahid M, Phillips BE, Albers SM, Giannoukakis N, Watkins SC, Robbins PD (2010) Identification of a cardiac specific protein transduction domain by in vivo biopanning using a M13 phage peptide display library in mice. PLoS One 5, e12252

    Article  PubMed Central  PubMed  Google Scholar 

  20. Lundin P, Johansson H, Guterstam P, Holm T, Hansen M, Langel U, EL Andaloussi S (2008) Distinct uptake routes of cell-penetrating peptide conjugates. Bioconjug Chem 19:2535–2542

    Article  CAS  PubMed  Google Scholar 

  21. El Andaloussi S, Guterstam P, Langel U (2007) Assessing the delivery efficacy and internalization route of cell-penetrating peptides. Nat Protoc 2:2043–2047

    Article  PubMed  Google Scholar 

  22. Gump JM, Dowdy SF (2007) TAT transduction: the molecular mechanism and therapeutic prospects. Trends Mol Med 13:443–448

    Article  CAS  PubMed  Google Scholar 

  23. Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Girard OM, Hanahan D, Mattrey RF, Ruoslahti E (2009) Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 16:510–520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Teesalu T, Sugahara KN, Kotamraju VR, Ruoslahti E (2009) C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc Natl Acad Sci U S A 106:16157–16162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Greenwald DR, Ruoslahti E (2010) Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 328:1031–1035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Pang HB, Braun GB, She ZG, Kotamraju VR, Sugahara KN, Teesalu T, Ruoslahti E (2014) A free cysteine prolongs the half-life of a homing peptide and improves its tumor-penetrating activity. J Control Release 175:48–53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    Article  CAS  PubMed  Google Scholar 

  28. Hoogenboom HR (2002) Overview of antibody phage-display technology and its applications. Methods Mol Biol 178:1–37

    CAS  PubMed  Google Scholar 

  29. El-Andaloussi S, Johansson HJ, Holm T, Langel U (2007) A novel cell-penetrating peptide, M918, for efficient delivery of proteins and peptide nucleic acids. Mol Ther 15:1820–1826

    Article  CAS  PubMed  Google Scholar 

  30. Zahid M, Robbins PD (2011) Identification and characterization of tissue-specific protein transduction domains using peptide phage display. Methods Mol Biol 683:277–289

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Finnish Cancer Organizations and Sigrid Juselius Foundation. Maija Hyvönen has been supported by the Doctoral Program in Biomedicine (DPBM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pirjo Laakkonen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hyvönen, M., Laakkonen, P. (2015). Identification and Characterization of Homing Peptides Using In Vivo Peptide Phage Display. In: Langel, Ü. (eds) Cell-Penetrating Peptides. Methods in Molecular Biology, vol 1324. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2806-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2806-4_14

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2805-7

  • Online ISBN: 978-1-4939-2806-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics