Skip to main content

Intrinsic Disorder and Semi-disorder Prediction by SPINE-D

  • Protocol
  • First Online:
Prediction of Protein Secondary Structure

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1484))

Abstract

Over the past decade, it has become evident that a large proportion of proteins contain intrinsically disordered regions, which play important roles in pivotal cellular functions. Many computational tools have been developed with the aim of identifying the level and location of disorder within a protein. In this chapter, we describe a neural network based technique called SPINE-D that employs a unique three-state design and can accurately capture disordered residues in both short and long disordered regions. SPINE-D was trained on a large database of 4229 non-redundant proteins, and yielded an AUC of 0.86 on a cross-validation test and 0.89 on an independent test. SPINE-D can also detect a semi-disordered state that is associated with induced folders and aggregation-prone regions in disordered proteins and weakly stable or locally unfolded regions in structured proteins. We implement an online web service and an offline stand-alone program for SPINE-D, they are freely available at http://sparks-lab.org/SPINE-D/. We then walk you through how to use the online and offline SPINE-D in making disorder predictions, and examine the disorder and semi-disorder prediction in a case study on the p53 protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Uversky VN, Oldfield CJ, Dunker AK (2005) Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 18(5):343–384. doi:10.1002/jmr.747

    Article  CAS  PubMed  Google Scholar 

  2. Liu J, Perumal NB, Oldfield CJ, Su EW, Uversky VN, Dunker AK (2006) Intrinsic disorder in transcription factors. Biochemistry 45(22):6873–6888. doi:10.1021/bi0602718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Galea CA, Wang Y, Sivakolundu SG, Kriwacki RW (2008) Regulation of cell division by intrinsically unstructured proteins: intrinsic flexibility, modularity, and signaling conduits. Biochemistry 47(29):7598–7609. doi:10.1021/bi8006803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fuxreiter M, Tompa P, Simon I, Uversky VN, Hansen JC, Asturias FJ (2008) Malleable machines take shape in eukaryotic transcriptional regulation. Nat Chem Biol 4(12):728–737. doi:10.1038/nchembio.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN (2005) Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J 272(20):5129–5148. doi:10.1111/j.1742-4658.2005.04948.x

    Article  CAS  PubMed  Google Scholar 

  6. Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293(2):321–331. doi:10.1006/jmbi.1999.3110

    Article  CAS  PubMed  Google Scholar 

  7. Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Uversky VN, Obradovic Z (2007) Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J Proteome Res 6(5):1882–1898. doi:10.1021/pr060392u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Habchi J, Tompa P, Longhi S, Uversky VN (2014) Introducing protein intrinsic disorder. Chem Rev 114(13):6561–6588. doi:10.1021/cr400514h

    Article  CAS  PubMed  Google Scholar 

  9. Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337(3):635–645. doi:10.1016/j.jmb.2004.02.002

    Article  CAS  PubMed  Google Scholar 

  10. Iakoucheva LM, Brown CJ, Lawson JD, Obradović Z, Dunker AK (2002) Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol 323(3):573–584

    Article  CAS  PubMed  Google Scholar 

  11. Raychaudhuri S, Dey S, Bhattacharyya NP, Mukhopadhyay D (2009) The role of intrinsically unstructured proteins in neurodegenerative diseases. PLoS One 4(5):e5566. doi:10.1371/journal.pone.0005566

    Article  PubMed  PubMed Central  Google Scholar 

  12. Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37:215–246. doi:10.1146/annurev.biophys.37.032807.125924

    Article  CAS  PubMed  Google Scholar 

  13. Cheng Y, LeGall T, Oldfield CJ, Mueller JP, Van YY, Romero P, Cortese MS, Uversky VN, Dunker AK (2006) Rational drug design via intrinsically disordered protein. Trends Biotechnol 24(10):435–442. doi:10.1016/j.tibtech.2006.07.005

    Article  CAS  PubMed  Google Scholar 

  14. Eliezer D (2009) Biophysical characterization of intrinsically disordered proteins. Curr Opin Struct Biol 19(1):23–30. doi:10.1016/j.sbi.2008.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bernadó P, Svergun DI (2012) Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering. Mol Biosyst 8(1):151–167. doi:10.1039/c1mb05275f

    Article  PubMed  Google Scholar 

  16. Kikhney AG, Svergun DI (2015) A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Lett 589(19 Pt A):2570–2577. doi:10.1016/j.febslet.2015.08.027

    Article  CAS  PubMed  Google Scholar 

  17. Jensen MR, Ruigrok RW, Blackledge M (2013) Describing intrinsically disordered proteins at atomic resolution by NMR. Curr Opin Struct Biol 23(3):426–435. doi:10.1016/j.sbi.2013.02.007

    Article  CAS  PubMed  Google Scholar 

  18. Mittag T, Forman-Kay JD (2007) Atomic-level characterization of disordered protein ensembles. Curr Opin Struct Biol 17(1):3–14. doi:10.1016/j.sbi.2007.01.009

    Article  CAS  PubMed  Google Scholar 

  19. Receveur-Bréchot V, Bourhis JM, Uversky VN, Canard B, Longhi S (2006) Assessing protein disorder and induced folding. Proteins 62(1):24–45. doi:10.1002/prot.20750

    Article  PubMed  Google Scholar 

  20. Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1(6):2876–2890. doi:10.1038/nprot.2006.202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Oldfield CJ, Dunker AK (2014) Intrinsically disordered proteins and intrinsically disordered protein regions. Annu Rev Biochem 83:553–584. doi:10.1146/annurev-biochem-072711-164947

    Article  CAS  PubMed  Google Scholar 

  22. Linding R, Russell RB, Neduva V, Gibson TJ (2003) GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res 31(13):3701–3708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dosztányi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21(16):3433–3434. doi:10.1093/bioinformatics/bti541

    Article  PubMed  Google Scholar 

  24. Prilusky J, Felder CE, Zeev-Ben-Mordehai T, Rydberg EH, Man O, Beckmann JS, Silman I, Sussman JL (2005) FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21(16):3435–3438. doi:10.1093/bioinformatics/bti537

    Article  CAS  PubMed  Google Scholar 

  25. Schlessinger A, Punta M, Rost B (2007) Natively unstructured regions in proteins identified from contact predictions. Bioinformatics 23(18):2376–2384. doi:10.1093/bioinformatics/btm349

    Article  CAS  PubMed  Google Scholar 

  26. Zhang T, Faraggi E, Xue B, Dunker AK, Uversky VN, Zhou Y (2012) SPINE-D: accurate prediction of short and long disordered regions by a single neural-network based method. J Biomol Struct Dyn 29(4):799–813. doi:10.1080/073911012010525022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ward JJ, McGuffin LJ, Bryson K, Buxton BF, Jones DT (2004) The DISOPRED server for the prediction of protein disorder. Bioinformatics 20(13):2138–2139. doi:10.1093/bioinformatics/bth195

    Article  CAS  PubMed  Google Scholar 

  28. Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB (2003) Protein disorder prediction: implications for structural proteomics. Structure 11(11):1453–1459

    Article  CAS  PubMed  Google Scholar 

  29. Yang ZR, Thomson R, McNeil P, Esnouf RM (2005) RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21(16):3369–3376. doi:10.1093/bioinformatics/bti534

    Article  CAS  PubMed  Google Scholar 

  30. Vullo A, Bortolami O, Pollastri G, Tosatto SC (2006) Spritz: a server for the prediction of intrinsically disordered regions in protein sequences using kernel machines. Nucleic Acids Res 34(Web Server issue):W164–W168. doi:10.1093/nar/gkl166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK (2001) Sequence complexity of disordered protein. Proteins 42(1):38–48

    Article  CAS  PubMed  Google Scholar 

  32. Su CT, Chen CY, Hsu CM (2007) iPDA: integrated protein disorder analyzer. Nucleic Acids Res 35(Web Server issue):W465–W472. doi:10.1093/nar/gkm353

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hirose S, Shimizu K, Kanai S, Kuroda Y, Noguchi T (2007) POODLE-L: a two-level SVM prediction system for reliably predicting long disordered regions. Bioinformatics 23(16):2046–2053. doi:10.1093/bioinformatics/btm302

    Article  CAS  PubMed  Google Scholar 

  34. Yang JY, Yang MQ (2008) Predicting protein disorder by analyzing amino acid sequence. BMC Genomics 9(Suppl 2):S8. doi:10.1186/1471-2164-9-S2-S8

    Article  PubMed  PubMed Central  Google Scholar 

  35. Schlessinger A, Liu J, Rost B (2007) Natively unstructured loops differ from other loops. PLoS Comput Biol 3(7):e140. doi:10.1371/journal.pcbi.0030140

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang L, Sauer UH (2008) OnD-CRF: predicting order and disorder in proteins using [corrected] conditional random fields. Bioinformatics 24(11):1401–1402. doi:10.1093/bioinformatics/btn132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McGuffin LJ (2008) Intrinsic disorder prediction from the analysis of multiple protein fold recognition models. Bioinformatics 24(16):1798–1804. doi:10.1093/bioinformatics/btn326

    Article  CAS  PubMed  Google Scholar 

  38. McGuffin LJ, Atkins JD, Salehe BR, Shuid AN, Roche DB (2015) IntFOLD: an integrated server for modelling protein structures and functions from amino acid sequences. Nucleic Acids Res 43(W1):W169–W173. doi:10.1093/nar/gkv236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ishida T, Kinoshita K (2007) PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res 35(Web Server issue):W460–W464. doi:10.1093/nar/gkm363

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ishida T, Kinoshita K (2008) Prediction of disordered regions in proteins based on the meta approach. Bioinformatics 24(11):1344–1348. doi:10.1093/bioinformatics/btn195

    Article  CAS  PubMed  Google Scholar 

  41. Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN (2010) PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta 1804(4):996–1010. doi:10.1016/j.bbapap.2010.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schlessinger A, Punta M, Yachdav G, Kajan L, Rost B (2009) Improved disorder prediction by combination of orthogonal approaches. PLoS One 4(2):e4433. doi:10.1371/journal.pone.0004433

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mizianty MJ, Stach W, Chen K, Kedarisetti KD, Disfani FM, Kurgan L (2010) Improved sequence-based prediction of disordered regions with multilayer fusion of multiple information sources. Bioinformatics 26(18):i489–i496. doi:10.1093/bioinformatics/btq373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Deng X, Eickholt J, Cheng J (2009) PreDisorder: ab initio sequence-based prediction of protein disordered regions. BMC Bioinformatics 10:436. doi:10.1186/1471-2105-10-436

    Article  PubMed  PubMed Central  Google Scholar 

  45. Vucetic S, Brown CJ, Dunker AK, Obradovic Z (2003) Flavors of protein disorder. Proteins 52(4):573–584. doi:10.1002/prot.10437

    Article  CAS  PubMed  Google Scholar 

  46. He B, Wang K, Liu Y, Xue B, Uversky VN, Dunker AK (2009) Predicting intrinsic disorder in proteins: an overview. Cell Res 19(8):929–949. doi:10.1038/cr.2009.87

    Article  CAS  PubMed  Google Scholar 

  47. Peng K, Radivojac P, Vucetic S, Dunker AK, Obradovic Z (2006) Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 7:208. doi:10.1186/1471-2105-7-208

    Article  PubMed  PubMed Central  Google Scholar 

  48. Radivojac P, Obradovic Z, Smith DK, Zhu G, Vucetic S, Brown CJ, Lawson JD, Dunker AK (2004) Protein flexibility and intrinsic disorder. Protein Sci 13(1):71–80. doi:10.1110/ps.03128904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Monastyrskyy B, Fidelis K, Moult J, Tramontano A, Kryshtafovych A (2011) Evaluation of disorder predictions in CASP9. Proteins 79(Suppl 10):107–118. doi:10.1002/prot.23161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang T, Faraggi E, Li Z, Zhou Y (2013) Intrinsically semi-disordered state and its role in induced folding and protein aggregation. Cell Biochem Biophys 67(3):1193–1205. doi:10.1007/s12013-013-9638-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Faraggi E, Xue B, Zhou Y (2009) Improving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network. Proteins 74(4):847–856. doi:10.1002/prot.22193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Faraggi E, Yang Y, Zhang S, Zhou Y (2009) Predicting continuous local structure and the effect of its substitution for secondary structure in fragment-free protein structure prediction. Structure 17(11):1515–1527. doi:10.1016/j.str.2009.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang T, Faraggi E, Zhou Y (2010) Fluctuations of backbone torsion angles obtained from NMR-determined structures and their prediction. Proteins 78(16):3353–3362. doi:10.1002/prot.22842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Faraggi E, Zhang T, Yang Y, Kurgan L, Zhou Y (2012) SPINE X: improving protein secondary structure prediction by multistep learning coupled with prediction of solvent accessible surface area and backbone torsion angles. J Comput Chem 33(3):259–267. doi:10.1002/jcc.21968

    Article  CAS  PubMed  Google Scholar 

  56. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sickmeier M, Hamilton JA, LeGall T, Vacic V, Cortese MS, Tantos A, Szabo B, Tompa P, Chen J, Uversky VN, Obradovic Z, Dunker AK (2007) DisProt: the database of disordered proteins. Nucleic Acids Res 35(Database issue):D786–D793. doi:10.1093/nar/gkl893

    Article  CAS  PubMed  Google Scholar 

  58. Sirota FL, Ooi HS, Gattermayer T, Schneider G, Eisenhaber F, Maurer-Stroh S (2010) Parameterization of disorder predictors for large-scale applications requiring high specificity by using an extended benchmark dataset. BMC Genomics 11(Suppl 1):S15. doi:10.1186/1471-2164-11-S1-S15

    Article  PubMed  PubMed Central  Google Scholar 

  59. Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8(4):275–283. doi:10.1038/nrm2147

    Article  CAS  PubMed  Google Scholar 

  60. Uversky VN, Oldfield CJ, Midic U, Xie H, Xue B, Vucetic S, Iakoucheva LM, Obradovic Z, Dunker AK (2009) Unfoldomics of human diseases: linking protein intrinsic disorder with diseases. BMC Genomics 10(Suppl 1):S7. doi:10.1186/1471-2164-10-S1-S7

    Article  PubMed  PubMed Central  Google Scholar 

  61. Borcherds W, Theillet FX, Katzer A, Finzel A, Mishall KM, Powell AT, Wu H, Manieri W, Dieterich C, Selenko P, Loewer A, Daughdrill GW (2014) Disorder and residual helicity alter p53-Mdm2 binding affinity and signaling in cells. Nat Chem Biol 10(12):1000–1002. doi:10.1038/nchembio.1668

    Article  CAS  PubMed  Google Scholar 

  62. Kriwacki RW (2014) Protein dynamics: tuning disorder propensity in p53. Nat Chem Biol 10(12):987–988. doi:10.1038/nchembio.1692

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by National Health and Medical Research Council (1059775 and 1083450) of Australia and Australian Research Council’s Linkage Infrastructure, Equipment and Facilities funding scheme (project number LE150100161) to Y.Z. We also gratefully acknowledge the support of the Griffith University eResearch Services Team and the use of the High Performance Computing Cluster "Gowonda" to complete this research. This research/project has also been undertaken with the aid of the research cloud resources provided by the Queensland Cyber Infrastructure Foundation (QCIF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaoqi Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zhang, T., Faraggi, E., Li, Z., Zhou, Y. (2017). Intrinsic Disorder and Semi-disorder Prediction by SPINE-D. In: Zhou, Y., Kloczkowski, A., Faraggi, E., Yang, Y. (eds) Prediction of Protein Secondary Structure. Methods in Molecular Biology, vol 1484. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6406-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6406-2_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6404-8

  • Online ISBN: 978-1-4939-6406-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics