Skip to main content

Experiment-Assisted Secondary Structure Prediction with RNAstructure

  • Protocol
  • First Online:
RNA Structure Determination

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1490))

Abstract

Experimental probing data can be used to improve the accuracy of RNA secondary structure prediction. The software package RNAstructure can take advantage of enzymatic cleavage data, FMN cleavage data, traditional chemical modification reactivity data, and SHAPE reactivity data for secondary structure modeling. This chapter provides protocols for using experimental probing data with RNAstructure to restrain or constrain RNA secondary structure prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holbrook SR, Kim SH (1997) RNA crystallography. Biopolymers 44(1):3–21. doi:10.1002/(SICI)1097-0282(1997)44:13::AID-BIP23.0.CO;2-Z

  2. Furtig B, Richter C, Wohnert J, Schwalbe H (2003) NMR spectroscopy of RNA. Chembiochem 4(10):936–962. doi:10.1002/cbic.200300700

    Article  PubMed  Google Scholar 

  3. Bai XC, McMullan G, Scheres SH (2015) How cryo-EM is revolutionizing structural biology. Trends Biochem Sci 40(1):49–57. doi:10.1016/j.tibs.2014.10.005

    Article  CAS  PubMed  Google Scholar 

  4. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A, Lao K, Surani MA (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6(5):377–382. doi:10.1038/nmeth.1315

    Article  CAS  PubMed  Google Scholar 

  5. Martin JA, Wang Z (2011) Next-generation transcriptome assembly. Nat Rev Genet 12(10):671–682. doi:10.1038/nrg3068

    Article  CAS  PubMed  Google Scholar 

  6. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652. doi:10.1038/nbt.1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Merino EJ, Wilkinson KA, Coughlan JL, Weeks KM (2005) RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J Am Chem Soc 127(12):4223–4231

    Article  CAS  PubMed  Google Scholar 

  8. Underwood JG, Uzilov AV, Katzman S, Onodera CS, Mainzer JE, Mathews DH, Lowe TM, Salama SR, Haussler D (2010) FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat Methods 7(12):995–1001. doi:10.1038/nmeth.1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kertesz M, Wan Y, Mazor E, Rinn JL, Nutter RC, Chang HY, Segal E (2010) Genome-wide measurement of RNA secondary structure in yeast. Nature 467(7311):103–107. doi:10.1038/nature09322

    Article  CAS  PubMed  Google Scholar 

  10. Ding Y, Tang Y, Kwok CK, Zhang Y, Bevilacqua PC, Assmann SM (2014) In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505(7485):696–700. doi:10.1038/nature12756

    Article  CAS  PubMed  Google Scholar 

  11. Lucks JB, Mortimer SA, Trapnell C, Luo S, Aviran S, Schroth GP, Pachter L, Doudna JA, Arkin AP (2011) Multiplexed RNA structure characterization with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Proc Natl Acad Sci U S A 108(27):11063–11068. doi:10.1073/pnas.1106501108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ziehler WA, Engelke DR (2001) Probing RNA structure with chemical reagents and enzymes. Curr Protoc Nucleic Acid Chem Chapter 6: Unit 6 1. doi:10.1002/0471142700.nc0601s00

    Google Scholar 

  13. Low JT, Weeks KM (2010) SHAPE-directed RNA secondary structure prediction. Methods 52(2):150–158. doi:10.1016/j.ymeth.2010.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Knapp G (1989) Enzymatic approaches to probing RNA secondary and tertiary structure. Methods Enzymol 180:192–212

    Article  CAS  PubMed  Google Scholar 

  15. Ehresmann C, Baudin F, Mougel M, Romby P, Ebel J, Ehresmann B (1987) Probing the structure of RNAs in solution. Nucleic Acids Res 15:9109–9128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ding Y, Kwok CK, Tang Y, Bevilacqua PC, Assmann SM (2015) Genome-wide profiling of in vivo RNA structure at single-nucleotide resolution using structure-seq. Nat Protoc 10(7):1050–1066. doi:10.1038/nprot.2015.064

    Article  CAS  PubMed  Google Scholar 

  17. Sloma MF, Mathews DH (2015) Improving RNA secondary structure prediction with structure mapping data. Methods Enzymol 553:91–114. doi:10.1016/bs.mie.2014.10.053

    Article  CAS  PubMed  Google Scholar 

  18. Peattie DA, Gilbert W (1980) Chemical probes for higher-order structure in RNA. Proc Natl Acad Sci U S A 77(8):4679–4682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tijerina P, Mohr S, Russell R (2007) DMS footprinting of structured RNAs and RNA-protein complexes. Nat Protoc 2(10):2608–2623. doi:10.1038/nprot.2007.380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zaug AJ, Cech TR (1995) Analysis of the structure of Tetrahymena nuclear RNAs in vivo: telomerase RNA, the self-splicing rRNA Intron, and U2 snRNA. RNA 1:363–374

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A 101:7287–7292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Daou-Chabo R, Condon C (2009) RNase J1 endonuclease activity as a probe of RNA secondary structure. RNA 15(7):1417–1425. doi:10.1261/rna.1574309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Burgstaller P, Famulok M (1997) Flavin-dependent photocleavage of RNA at G.U base pairs. J Am Chem Soc 119:1137–1138

    Article  CAS  Google Scholar 

  24. Tullius TD, Dombroski BA (1986) Hydroxyl radical “footprinting”: high-resolution information about DNA-protein contacts and application to lambda repressor and Cro protein. Proc Natl Acad Sci U S A 83(15):5469–5473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Culver GM, Noller HF (2000) Directed hydroxyl radical probing of RNA from iron(II) tethered to proteins in ribonucleoprotein complexes. Methods Enzymol 318:461–475

    Article  CAS  PubMed  Google Scholar 

  26. Shcherbakova I, Mitra S, Beer RH, Brenowitz M (2006) Fast Fenton footprinting: a laboratory-based method for the time-resolved analysis of DNA, RNA and proteins. Nucleic Acids Res 34(6):e48. doi:10.1093/nar/gkl055

    Article  PubMed  PubMed Central  Google Scholar 

  27. Regulski EE, Breaker RR (2008) In-line probing analysis of riboswitches. Methods Mol Biol 419:53–67. doi:10.1007/978-1-59745-033-1_4

    Article  CAS  PubMed  Google Scholar 

  28. Deigan KE, Li TW, Mathews DH, Weeks KM (2009) Accurate SHAPE-directed RNA structure determination. Proc Natl Acad Sci U S A 106(1):97–102. doi:10.1073/pnas.0806929106

    Article  CAS  PubMed  Google Scholar 

  29. Mortimer SA, Weeks KM (2008) Time-resolved RNA SHAPE chemistry. J Am Chem Soc 130(48):16178–16180. doi:10.1021/ja8061216

    Article  CAS  PubMed  Google Scholar 

  30. Watts JM, Dang KK, Gorelick RJ, Leonard CW, Bess JW Jr, Swanstrom R, Burch CL, Weeks KM (2009) Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 460(7256):711–716. doi:10.1038/nature08237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters provides improved prediction of RNA secondary structure. J Mol Biol 288:911–940

    Article  CAS  PubMed  Google Scholar 

  32. Pace NR, Thomas BC, Woese CR (1999) Probing RNA structure, function, and history by comparative analysis. In: Gesteland RF, Cech TR, Atkins JF (eds) The RNA world, 2nd edn. Cold Spring Harbor, Cold Spring Harbor Laboratory Press, pp 113–141

    Google Scholar 

  33. Mathews DH (2004) Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. RNA 10:1178–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lu ZJ, Gloor JW, Mathews DH (2009) Improved RNA secondary structure prediction by maximizing expected pair accuracy. RNA 15:1805–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bellaousov S, Mathews DH (2010) ProbKnot: fast prediction of RNA secondary structure including pseudoknots. RNA 16:1870–1880. doi:10.1261/rna.2125310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hajdin CE, Bellaousov S, Huggins W, Leonard CW, Mathews DH, Weeks KM (2013) Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots. Proc Natl Acad Sci U S A 110(14):5498–5503. doi:10.1073/pnas.1219988110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mathews DH, Turner DH (2002) Dynalign: an algorithm for finding the secondary structure common to two RNA sequences. J Mol Biol 317:191–203

    Article  CAS  PubMed  Google Scholar 

  38. Xu Z, Mathews DH (2011) Multilign: an algorithm to predict secondary structures conserved in multiple RNA sequences. Bioinformatics 27(5):626–632. doi:10.1093/bioinformatics/btq726

    Article  CAS  PubMed  Google Scholar 

  39. Aviran S, Trapnell C, Lucks JB, Mortimer SA, Luo S, Schroth GP, Doudna JA, Arkin AP, Pachter L (2011) Modeling and automation of sequencing-based characterization of RNA structure. Proc Natl Acad Sci U S A 108(27):11069–11074. doi:10.1073/pnas.1106541108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu Y, Shi B, Ding X, Liu T, Hu X, Yip KY, Yang ZR, Mathews DH, Lu ZJ (2015) Improved prediction of RNA secondary structure by integrating the free energy model with restraints derived from experimental probing data. Nucleic Acids Res 43(15):7247–7259. doi:10.1093/nar/gkv706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Quarrier S, Martin JS, Davis-Neulander L, Beauregard A, Laederach A (2010) Evaluation of the information content of RNA structure mapping data for secondary structure prediction. RNA 16(6):1108–1117. doi:10.1261/rna.1988510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Knight R, Birmingham A, Yarus M (2004) BayesFold: Rational 2° folds that combine thermodynamic, covariation, and chemical data for aligned RNA sequences. RNA 10(9):1323–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Moazed D, Stern S, Noller HF (1986) Rapid chemical probing of conformation in 16S ribosomal RNA and 30S ribosomal subunits using primer extension. J Mol Biol 187:399–416

    Article  CAS  PubMed  Google Scholar 

  44. Matsuura M, Noah JW, Lambowitz AM (2001) Mechanism of maturase-promoted group II intron splicing. EMBO J 20:7259–7270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mathews DH (2005) Predicting a set of minimal free energy RNA secondary structures common to two sequences. Bioinformatics 21:2246–2253

    Article  CAS  PubMed  Google Scholar 

  46. Wuchty S, Fontana W, Hofacker IL, Schuster P (1999) Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers 49:145–165

    Article  CAS  PubMed  Google Scholar 

  47. Zuker M (1989) On finding all suboptimal foldings of an RNA molecule. Science 244:48–52

    Article  CAS  PubMed  Google Scholar 

  48. Brunel C, Romby P, Westhof E, Ehresmann C, Ehresmann B (1991) Three-dimensional model of Escherichia coli ribosomal 5 S RNA as deduced from structure probing in solution and computer modeling. J Mol Biol 221:293–308

    Article  CAS  PubMed  Google Scholar 

  49. Mathews DH, Turner DH (2002) Use of chemical modification to elucidate RNA folding pathways. In: Beaucage SL, Bergstrum DE, Glick GD, Jones RA (eds) Current protocols in nucleic acid chemistry. Wiley, New York, pp 11.19.11–11.19.14

    Google Scholar 

  50. Chen JL, Bellaousov S, Tubbs JD, Kennedy SD, Lopez MJ, Mathews DH, Turner DH (2015) Nuclear magnetic resonance-assisted prediction of secondary structure for RNA: incorporation of direction-dependent chemical shift constraints. Biochemistry 54(45):6769–6782. doi:10.1021/acs.biochem.5b00833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hart JM, Kennedy SD, Mathews DH, Turner DH (2008) NMR-assisted prediction of RNA secondary structure: identification of a probable pseudoknot in the coding region of an R2 retrotransposon. J Am Chem Soc 130(31):10233–10239. doi:10.1021/ja8026696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ryder SP, Ortoleva-Donnelly L, Kosek AB, Strobel SA (2000) Chemical probing of RNA by nucleotide analog interference mapping. Methods Enzymol 317:92–109

    Article  CAS  PubMed  Google Scholar 

  53. Waldsich C (2008) Dissecting RNA folding by nucleotide analog interference mapping (NAIM). Nat Protoc 3(5):811–823. doi:10.1038/nprot.2008.45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kierzek E, Kierzek R, Turner DH, Catrina IE (2006) Facilitating RNA structure prediction with microarrays. Biochemistry 45(2):581–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kladwang W, VanLang CC, Cordero P, Das R (2011) A two-dimensional mutate-and-map strategy for non-coding RNA structure. Nat Chem 3(12):954–962. doi:10.1038/nchem.1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kladwang W, Cordero P, Das R (2011) A mutate-and-map strategy accurately infers the base pairs of a 35-nucleotide model RNA. RNA 17(3):522–534. doi:10.1261/rna.2516311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Michel F, Westhof E (1990) Modeling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol 216:585–610

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This protocol was developed with the support of National Institutes of Health Grant R01GM076485 to D.H.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Mathews .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Xu, Z.Z., Mathews, D.H. (2016). Experiment-Assisted Secondary Structure Prediction with RNAstructure. In: Turner, D., Mathews, D. (eds) RNA Structure Determination. Methods in Molecular Biology, vol 1490. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6433-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6433-8_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6431-4

  • Online ISBN: 978-1-4939-6433-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics