Skip to main content

Self-Organizing Hidden Markov Model Map (SOHMMM): Biological Sequence Clustering and Cluster Visualization

  • Protocol
  • First Online:
Book cover Hidden Markov Models

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1552))

Abstract

The present study devises mapping methodologies and projection techniques that visualize and demonstrate biological sequence data clustering results. The Sequence Data Density Display (SDDD) and Sequence Likelihood Projection (SLP) visualizations represent the input symbolical sequences in a lower-dimensional space in such a way that the clusters and relations of data elements are depicted graphically. Both operate in combination/synergy with the Self-Organizing Hidden Markov Model Map (SOHMMM). The resulting unified framework is in position to analyze automatically and directly raw sequence data. This analysis is carried out with little, or even complete absence of, prior information/domain knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu R, Wunsch D (2005) Survey of clustering algorithms. IEEE Trans Neural Netw 16:645–678

    Article  PubMed  Google Scholar 

  2. Du K-L (2010) Clustering: a neural network approach. Neural Netw 23:89–107

    Article  PubMed  Google Scholar 

  3. Kohonen T (2001) Self-organizing maps, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  4. Tasdemir K (2010) Graph based representations of density distribution and distances for self-organizing maps. IEEE Trans Neural Netw 21:520–526

    Article  PubMed  Google Scholar 

  5. Tasdemir K, Merenyi E (2009) Exploiting data topology in visualization and clustering of self-organizing maps. IEEE Trans Neural Netw 20:549–562

    Article  PubMed  Google Scholar 

  6. Brugger D, Bogdan M, Rosenstiel W (2008) Automatic cluster detection in Kohonen’s SOM. IEEE Trans Neural Netw 19:442–459

    Article  PubMed  Google Scholar 

  7. Ultsch A (2003) Maps for the visualization of high-dimensional data spaces. In: Proc. workshop self-organizing maps, pp 225–230

    Google Scholar 

  8. Yin H (2002) ViSOM—a novel method for multivariate data projection and structure visualization. IEEE Trans Neural Netw 13:237–243

    Article  PubMed  Google Scholar 

  9. Kraaijveld MA, Mao J, Jain AK (1995) A nonlinear projection method based on Kohonen’s topology preserving maps. IEEE Trans Neural Netw 6:548–559

    Article  CAS  PubMed  Google Scholar 

  10. Ferles C, Stafylopatis A (2013) Self-Organizing Hidden Markov Model Map (SOHMMM). Neural Netw 48:133–147

    Article  PubMed  Google Scholar 

  11. Ferles C, Siolas G, Stafylopatis A (2013) Scaled self-organizing map—hidden Markov model architecture for biological sequence clustering. Appl Artif Intell 27:461–495

    Article  Google Scholar 

  12. Ferles C, Siolas G, Stafylopatis A (2011) Scaled on-line unsupervised learning algorithm for a SOM-HMM hybrid. In: 26th Int. symposium computer information sciences, pp 533–537

    Google Scholar 

  13. Ferles C, Stafylopatis A (2008) A hybrid self-organizing model for sequence analysis. In: 20th IEEE int. conf. tools artificial intell., pp 105–112

    Google Scholar 

  14. Ferles C, Stafylopatis A (2008) Sequence clustering with the self-organizing hidden Markov model map. In: 8th IEEE int. conf. bioinformatics bioengineering, pp 1–7

    Google Scholar 

  15. Barreto G de A, Araujo A, Kremer S (2003) A taxonomy of spatiotemporal connectionist networks revisited: the unsupervised case. Neural Comput 15:1255–1320

    Article  Google Scholar 

  16. Hammer B, Micheli A, Strickert M et al (2004) A general framework for unsupervised processing of structured data. Neurocomputing 57:3–35

    Article  Google Scholar 

  17. Hammer B, Hasenfuss A (2010) Topographic mapping of large dissimilarity data sets. Neural Comput 22:2229–2284

    Article  PubMed  Google Scholar 

  18. Lebbah M, Rogovschi N, Bennani Y (2007) BeSOM: Bernoulli on self-organizing map. In: Int. joint conf. neural netw., pp 631–636

    Google Scholar 

  19. Somervuo P (2004) Online algorithm for the self-organizing map of symbol strings. Neural Netw 17:1231–1239

    Article  PubMed  Google Scholar 

  20. Strickert M, Hammer B (2004) Self-organizing context learning. In: Proc. European symposium artificial neural netw., pp 39–44

    Google Scholar 

  21. Koski T (2001) Hidden Markov models for bioinformatics. Kluwer Academics Publishers, Dordrecht, The Netherlands

    Book  Google Scholar 

  22. Rabiner L (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77:257–286

    Article  Google Scholar 

  23. The iProClass Protein Knowledgebase (release 4.32) [online]. Available: http://pir.georgetown.edu/

  24. Sharma K (2008) Bioinformatics: sequence alignment and Markov models. McGraw-Hill, New York

    Google Scholar 

  25. Durbin R, Eddy SR, Krogh A et al (1998) Biological sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge University Press, Cambridge

    Book  Google Scholar 

  26. Krogh A, Brown M, Mian IS et al (1994) Hidden Markov models in computational biology: applications to protein modeling. J Mol Biol 235:1501–1531

    Article  CAS  PubMed  Google Scholar 

  27. Mount DW (2004) Bioinformatics: sequence and genome analysis, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  28. Baldi P, Brunak S (2001) Bioinformatics: the machine learning approach, 2nd edn. The MIT Press, Cambridge, Massachusetts

    Google Scholar 

  29. UCI Machine Learning Repository [online]. Available: http://archive.ics.uci.edu/ml/

Download references

Acknowledgment

The authors would like to thank Anastasis Tzimas for his insightful remarks and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Ferles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ferles, C., Beaufort, WS., Ferle, V. (2017). Self-Organizing Hidden Markov Model Map (SOHMMM): Biological Sequence Clustering and Cluster Visualization. In: Westhead, D., Vijayabaskar, M. (eds) Hidden Markov Models. Methods in Molecular Biology, vol 1552. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6753-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6753-7_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6751-3

  • Online ISBN: 978-1-4939-6753-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics