Skip to main content

Preparation of a Conditional RNA Switch

  • Protocol
  • First Online:
Book cover RNA Nanostructures

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1632))

Abstract

RNA has gained great interest for use in biomedical and therapeutic applications. This is due in part to RNA’s ability to perform multiple functions, including the regulation of endogenously expressed genes. However, the ability of RNA based drugs to distinguish target diseased cells from healthy tissue remains challenging. Here we present methods for the production of a recently developed conditional RNA switch that releases a Dicer substrate RNA in response to interaction with a specific RNA biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grabow WW, Jaeger L (2014) RNA self-assembly and RNA nanotechnology. Acc Chem Res 47(6):1871–1880

    Article  CAS  PubMed  Google Scholar 

  2. Guo P (2010) The emerging field of RNA nanotechnology. Nat Nanotechnol 5(12):833–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Batey RT, Rambo RP, Doudna JA (1999) Tertiary motifs in RNA structure and folding. Angew Chem Int Ed Engl 38(16):2326–2343

    Article  CAS  PubMed  Google Scholar 

  4. Butcher SE, Pyle AM (2011) The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks. Acc Chem Res 44(12):1302–1311

    Article  CAS  PubMed  Google Scholar 

  5. Parlea L et al (2016) Ring Catalog: a resource for designing self-assembling RNA nanostructures. Methods 103:128–137

    Article  CAS  PubMed  Google Scholar 

  6. Bindewald E, Hayes R, Yingling YG, Kasprzak W, Shapiro BA (2008) RNAJunction: a database of RNA junctions and kissing loops for three-dimensional structural analysis and nanodesign. Nucleic Acids Res 36(Database issue):D392–D397

    Article  CAS  PubMed  Google Scholar 

  7. Parlea LG, Sweeney BA, Hosseini-Asanjan M, Zirbel CL, Leontis NB (2016) The RNA 3D motif atlas: computational methods for extraction, organization and evaluation of RNA motifs. Methods 103:99–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Grabow WW et al (2011) Self-assembling RNA nanorings based on RNAI/II inverse kissing complexes. Nano Lett 11(2):878–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Severcan I, Geary C, Verzemnieks E, Chworos A, Jaeger L (2009) Square-shaped RNA particles from different RNA folds. Nano Lett 9(3):1270–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou J et al (2013) Functional in vivo delivery of multiplexed anti-HIV-1 siRNAs via a chemically synthesized aptamer with a sticky bridge. Mol Ther 21(1):192–200

    Article  CAS  PubMed  Google Scholar 

  11. Afonin KA et al (2015) Triggering of RNA interference with RNA-RNA, RNA-DNA, and DNA-RNA nanoparticles. ACS Nano 9(1):251–259

    Article  CAS  PubMed  Google Scholar 

  12. Delebecque CJ, Lindner AB, Silver PA, Aldaye FA (2011) Organization of intracellular reactions with rationally designed RNA assemblies. Science 333(6041):470–474

    Article  CAS  PubMed  Google Scholar 

  13. Afonin KA et al (2010) In vitro assembly of cubic RNA-based scaffolds designed in silico. Nat Nanotechnol 5(9):676–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu J, Liu Z, Jiang W, Wang G, Mao C (2015) De novo design of an RNA tile that self-assembles into a homo-octameric nanoprism. Nat Commun 6:5724

    Article  CAS  PubMed  Google Scholar 

  15. Zalatan JG et al (2015) Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160(1–2):339–350

    Article  CAS  PubMed  Google Scholar 

  16. Afonin KA et al (2016) The use of minimal RNA toeholds to trigger the activation of multiple functionalities. Nano Lett 16(3):1746–1753

    Article  CAS  PubMed  Google Scholar 

  17. Hochrein LM, Schwarzkopf M, Shahgholi M, Yin P, Pierce NA (2013) Conditional Dicer substrate formation via shape and sequence transduction with small conditional RNAs. J Am Chem Soc 135(46):17322–17330

    Google Scholar 

  18. Bindewald E et al (2016) Multistrand structure prediction of nucleic acid assemblies and design of RNA switches. Nano Lett 16(3):1726–1735

    Article  CAS  PubMed  Google Scholar 

  19. Zakrevsky P, Bindewald E, Shapiro BA (2016) RNA toehold interactions initiate conditional gene silencing. DNA RNA Nanotechnol 3(1):11–13

    Article  Google Scholar 

  20. Milligan JF, Groebe DR, Witherell GW, Uhlenbeck OC (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res 15(21):8783–8798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhu X, Li T, Dang Y, Feng Y, Huang P (2005) A novel in vitro transcription method for producing siRNAs without specific sequence requirements. Mol Biotechnol 31(3):187–192

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been funded in whole or in part with Federal funds from the Frederick National Laboratory for Cancer Research, National Institutes of Health, under Contract No. HHSN261200800001E. This research was supported [in part] by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does the mention of trade names, commercial products, or organizations imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Shapiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Zakrevsky, P., Parlea, L., Viard, M., Bindewald, E., Afonin, K.A., Shapiro, B.A. (2017). Preparation of a Conditional RNA Switch. In: Bindewald, E., Shapiro, B. (eds) RNA Nanostructures . Methods in Molecular Biology, vol 1632. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7138-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7138-1_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7137-4

  • Online ISBN: 978-1-4939-7138-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics