Skip to main content

Searching for Genes Involved in Metal Tolerance, Uptake, and Transport

  • Protocol
Book cover Phytoremediation

Part of the book series: Methods in Biotechnology ((MIBT,volume 23))

Abstract

Despite the recent exploitation of high-throughput methodologies such as cDNA microarrays, the overall picture of plant metal tolerance, accumulation, and translocation is far from complete. Understanding of this network would be beneficial for the optimization of the phytoremediation technique. This chapter compiles the key approaches in the search for novel genes from model plant species as well as other organisms, and briefly describes the genes known thus far to be involved in metal homeostasis in plants. In addition to unravelling the genes, the functional connections between genes, proteins, metabolites, and mineral ions should be understood. Thus, to get a full understanding of the processes, different analytical methods are needed. The main focus of this chapter is in the “omic” technologies, such as transcriptomics, proteomics, and metabolomics, and their potential in the discovery or analysis of the molecules that may play a significant role in metal tolerance, accumulation, and translocation in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Köarenlampi, S., Schat, H., Vangronsveld, J., et al. (2000) Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Env. Poll. 107, 225–231.

    Article  Google Scholar 

  2. Krämer, U. and Chardonnens, A. (2001) The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Appl. Microbiol.Biotechnol. 55, 661–672.

    Article  Google Scholar 

  3. Kärenlampi, S. (2002) Risk of GMO’s: general introduction, political issues,social and legal aspects. In: Risk Assessment and Sustainable Land Management Using Plants in Trace Element-Contaminated Soil, (Mench, M. and Mocquot, B.eds.), COST Action 837th WG2 Workshop, Bordeaux 2002. INRA, Centre Bordeaux-Aquitaine, Villenave d’Ornon cedex, France, pp.157–162.

    Google Scholar 

  4. Clemens, S., Palmgren, M. G., and Krämer, U. (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant. Sci. 7, 309–315.

    Article  CAS  Google Scholar 

  5. Williams, J. R., Morgan, A. G., Rouch, D. A., Brown, N. L., and Lee, B. T. (1993) Copper-resistant enteric bacteria from United Kingdom and Australian piggeries. Appl. Environ. Microbiol. 59, 2531–2537.

    CAS  Google Scholar 

  6. Silver, S. (1998) Genes for all metals: a bacterial view of the periodic table. The 1996 Thom Award Lecture. J. Ind. Microbiol. Biotechnol. 20, 1–12.

    Article  CAS  Google Scholar 

  7. Bizily, S. P., Rugh, C. L., and Meagher, R. B. (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat. Biotechnol. 18, 213–217.

    Article  CAS  Google Scholar 

  8. Pan, A., Tie, F., Yang, M., et al. (1993) Construction of a multiple copy of alphadomain gene fragment of human liver metallothionein IA in tandem arrays and its expression in transgenic tobacco plants. Protein Engineering 6, 755–762.

    Article  CAS  Google Scholar 

  9. Petris, M. J., Mercer, J. F., Culvenor, J. G., Lockhart, P., Gleeson, P. A., and Camakaris, J. (1996) Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J. 15, 6084–6095.

    CAS  Google Scholar 

  10. DiDonato, M., Narindsrasorasak, S., Forbes, J. R., Cox, D. W., and Sarkar, B.(1997) Expression, purification, and metal binding properties of the N-terminal domain from the Wilson disease putative copper-transporting ATPase (ATP7B). J. Biol. Chem. 272, 33,279–33,282.

    Article  CAS  Google Scholar 

  11. Hirayama, T., Kieber, J. J., Hirayama, N., et al. (1999) RESPONSIVE-TOANTAGONIST1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signalling in Arabidopsis. Cell 97, 383–393.

    Article  CAS  Google Scholar 

  12. Schat, H., Vooijs, R., and Kuiper, E. (1996) Identical major gene loci for heavy metal tolerances that have independently evolved in different local populations and subspecies of Silene vulgaris. Evolution 50, 1888–1895.

    Article  CAS  Google Scholar 

  13. Baker, A. J. M. and Brooks, R. R. (1989) Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1, 81–126.

    CAS  Google Scholar 

  14. Kerkeb, L. and Krämer, U. (2003) The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. Plant Physiol. 131, 716–724.

    Article  CAS  Google Scholar 

  15. Boominathan, R. and Doran, P. M. (2003) Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species. J. Biotechnol. 101, 131–146.

    Article  CAS  Google Scholar 

  16. Lombi, E., Zhao, F. J., Dunham, S. J., and McGrath, S. P. (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol. 145, 11–20.

    Article  CAS  Google Scholar 

  17. Persans, M. W., Nieman, K., and Salt, D. E. (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proc. Natl. Acad. Sci. USA 98, 9995–10,000.

    Article  CAS  Google Scholar 

  18. Bert, V., Macnair, M. R., de Laguerie, P., Saumitou-Laprade, P., and Petit, D.(2000) Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of Arabidopsis halleri (Brassicaceae). New Phytol. 146, 225–233.

    Article  CAS  Google Scholar 

  19. Macnair, M. R. (2002) Within and between population genetic variation for zinc accumulation in Arabidopsis halleri. New Phytol. 155, 59–66.

    Article  CAS  Google Scholar 

  20. Bert, V., Meerts, P., Saumitou-Laprade, P., Salis, P., Gruber, W., and Verbruggen, N.(2003) Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri. Plant Soil 249, 9–18.

    Article  CAS  Google Scholar 

  21. Pence, N. S., Larsen, P. B., Ebbs, S. D., et al. (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc.Natl. Acad. Sci. USA 97, 4956–4960.

    Article  CAS  Google Scholar 

  22. AssunÇão, A. G. L., Da Costa Martins, P., De Folter, S., Vooijs, R., Schat, H., and Aarts, M. G. M. (2001) Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ. 24, 217–226.

    Article  Google Scholar 

  23. Ma, L. Q., Komar, K. M., Tu, C., Zhang, W., Cai, Y., and Kennelley, E. D. (2001) A fern that hyperaccumulates arsenic. Nature 409, 579.

    Article  CAS  Google Scholar 

  24. Peer, W. A., Mamoudian, M., Lahner, B., Reeves, R. D., Murphy, A. S., and Salt, D. E. (2003) Identifying model metal hyperaccumulating plants: germplasm analysis of 20 Brassicaceae accessions from a wide geographical area. New Phytol. 159, 421–430.

    Article  CAS  Google Scholar 

  25. AssunÇão, A. G. L., Schat, H., and Aarts, M. G. M. (2003) Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol. 159, 351–360.

    Article  CAS  Google Scholar 

  26. Murphy, A. and Taiz, L. (1995) A new vertical mesh transfer technique for metaltolerance studies in Arabidopsis: ecotypic variation and copper-sensitive mutants.Plant Physiol. 108, 29–38.

    CAS  Google Scholar 

  27. Alonso-Blanco, C. and Koornneef, M. (2000) Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci. 5,22–29.

    Article  CAS  Google Scholar 

  28. Hanikenne, M. (2003) Chlamydomonas reinhardtii as a eukaryotic photosynthetic model for studies of heavy metal homeostasis and tolerance. New Phytol. 159,331–340.

    Article  CAS  Google Scholar 

  29. Lee, D. A., Chen, A., and Schroeder, J. I. (2003) ars 1, an Arabidopsis mutant exhibiting increased tolerance to arsenate and increased phosphate uptake. Plant J. 35, 637–646.

    Article  CAS  Google Scholar 

  30. Eide, D., Broderius, M., Fett, J., and Guerinot, M. L. (1996) A novel ironregulated metal transporter from plants identified by functional expression in yeast. Proc. Natl. Acad. Sci. USA 93, 5624–5628.

    Article  CAS  Google Scholar 

  31. Zhao, H. and Eide, D. (1996) The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proc. Natl.Acad. Sci. USA 93, 2454–2458.

    Article  CAS  Google Scholar 

  32. Grotz, N., Fox, T., Connolly, E., Park, W., Guerinot, M. L., and Eide, D. (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc. Natl. Acad. Sci. USA 95, 7220–7224.

    Article  CAS  Google Scholar 

  33. The Arabidopsis Genome Initiative. (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.

    Article  Google Scholar 

  34. Jander, G., Norris, S. R., Rounsley, S. D., Bush, D. F., Levin, I. M., and Last, R.L.(2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol. 129, 440–450.

    Article  CAS  Google Scholar 

  35. Flint-Garcia, S. A., Thornsberry, J. M., and Buckler, E. S. (2003) Structure of linkage disequilibrium in plants. Annu. Rev. Plant Biol. 54, 357–374.

    Article  CAS  Google Scholar 

  36. Nordborg, M., Borevitz, J. O., Bergelson, J., et al. (2002) The extent of linkage disequilibrium in Arabidopsis thaliana. Nat. Genet. 30, 190–193.

    Article  CAS  Google Scholar 

  37. Remington, D. L., Thornsberry, J. M., Matsuoka, Y., et al. (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc.Natl. Acad. Sci. USA 98, 11,479–11,484.

    Article  CAS  Google Scholar 

  38. Paran, I. and Zamir, D. (2003) Quantitative traits in plants: beyond the QTL. Trends Genet. 19, 303–306.

    Article  CAS  Google Scholar 

  39. Magidin, M., Pittman, J. K., Hirschi, K. D., and Bartel, B. (2003) ILR2, a novel gene regulating IAA conjugate sensitivity and metal transport in Arabidopsis thaliana. Plant J. 35, 523–534.

    Article  CAS  Google Scholar 

  40. Ling, H. Q., Bauer, P., Bereczky, Z., Keller, B., and Ganal, M. (2002) The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots. Proc.Natl. Acad. Sci. USA 99, 13,938–13,943.

    Article  CAS  Google Scholar 

  41. Wu, P., Liao, C. Y., Hu, B., et al. (2000) QTLs and epistasis for aluminum tolerance in rice (Oryza sativa L.) at different seedling stages. Theor. Appl. Genet. 100, 1295–1303.

    Article  CAS  Google Scholar 

  42. Nguyen, V. T., Nguyen, B. D., Sarkarung, S., Martinez, C., Paterson, A. H., and Nguyen, H. T. (2002) Mapping of genes controlling aluminum tolerance in rice: comparison of different genetic backgrounds. Mol. Genet. Genomics 267,772–780.

    Article  CAS  Google Scholar 

  43. Ma, J. F., Shen, R., Zhao, Z., et al. (2002) Response of rice to Al stress and identification of quantitative trait loci for Al tolerance. Plant Cell. Physiol. 43,652–659.

    Article  CAS  Google Scholar 

  44. Ma, J. F. and Furukawa, J. (2003) Recent progress in the research of external Al detoxification in higher plants: a minireview. J. Inorg. Biochem. 97, 46–51.

    Article  CAS  Google Scholar 

  45. Kobayashi, Y. and Koyama, H. (2003) QTL analysis of Al tolerance in recombinant inbred lines of Arabidopsis thaliana. Plant Cell. Physiol. 43, 1526–1533.

    Article  Google Scholar 

  46. Hoekenga, O. A., Vision, T. J., Shaff, J. E., et al. (2003) Identification and characterization of aluminium tolerance loci in Arabidopsis (Landsberg erecta xColumbia) by quantitative trait locus mapping. A physiologically simple but genetically complex trait. Plant Physiol. 132, 936–948.

    Article  CAS  Google Scholar 

  47. Liang, P. and Pardee, A. B. (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967–971.

    Article  CAS  Google Scholar 

  48. Suzuki, N., Koizumi, N., and Sano, H. (2001) Screening of cadmium-responsive genes in Arabidopsis thaliana. Plant Cell Environ. 24, 1177–1188.

    Article  CAS  Google Scholar 

  49. Bachem, C. W., van der Hoeven, R. S., de Bruijn, S. M., Vreugdenhil, D., Zabeau, M., and Visser, R. G. (1996) Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J. 9, 745–753.

    Article  CAS  Google Scholar 

  50. Sageström, C. G., Sun, B. I., and Sive, H. L. (1997) Subtractive cloning: past, present, and future. Annu. Rev. Biochem. 66, 751–783.

    Article  Google Scholar 

  51. Louie, M., Kondor, N., and DeWitt, J. G. (2003) Gene expression in cadmiumtolerant Datura innoxia: Detection and characterization of cDNAs induced in response to Cd2+. Plant Mol. Biol. 52, 81–89.

    Article  CAS  Google Scholar 

  52. Heidenreich, B., Mayer, K., Sandermann, H. J., and Ernst, D. (2001) Mercuryinduced genes in Arabidopsis thaliana: Identification of induced genes upon long-term mercuric ion exposure. Plant Cell Environ. 24, 1227–1234.

    Article  CAS  Google Scholar 

  53. Velculescu, V. E., Zhang, L., Vogelstein, B., and Kinzler, K. W. (1995) Serial analysis of gene expression. Science 270, 484–487.

    Article  CAS  Google Scholar 

  54. Ekman, D. R., Lorenz, W. W., Przybyla, A. E., Wolfe, N. L., and Dean, J. F. D.(2003) SAGE analysis of transcriptome responses in Arabidopsis roots exposed to 2,4,6-trinitrotoluene. Plant Physiol. 133, 1397–1406.

    Article  CAS  Google Scholar 

  55. Milla, M. A., Butler, E., Huete, A. R., Wilson, C. F., Anderson, O., and Gustafson, J. P. (2002) Expressed sequence tag-based gene expression analysis under aluminum stress in rye. Plant Physiol. 130, 1706–1716.

    Article  CAS  Google Scholar 

  56. Negishi, T., Nakanishi, H., Yazaki, J., et al. (2002) cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots. Plant J. 30, 83–94.

    Article  CAS  Google Scholar 

  57. Rudd, S. (2003) Expressed sequence tags: alternative or complement to whole genome sequences? Trends Plant Sci. 8, 321–329.

    Article  CAS  Google Scholar 

  58. Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.

    Article  CAS  Google Scholar 

  59. Becher, M., Talke, I. N., Krall, L., and Krämer, U. (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J. 37, 251–268.

    Article  CAS  Google Scholar 

  60. Weber, M., Harada, E., Vess, C. V., Roepenack-Lahaye, E., and Clemens, S.(2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J. 37, 269–281.

    Article  CAS  Google Scholar 

  61. Desikan, R., Mackerness, S. A.-H., Hancock, J. T., and Neill, S. J. (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol. 127, 159–172.

    Article  CAS  Google Scholar 

  62. Van Zhong, G. and Burns, J. K. (2003). Profiling ethylene-regulated gene expression in Arabidopsis thaliana by microarray analysis. Plant Mol. Biol. 53,117–131.

    Article  CAS  Google Scholar 

  63. Maathuis, F. J. M., Filatov, V., Herzyk, P., et al. (2003) Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant J. 35, 675–692.

    Article  CAS  Google Scholar 

  64. Gross, C., Kelleher, M., Iyer, V. R., Brown, P. O., and Winge, D. R. (2000) Identification of the copper regulon in Saccharomyces cerevisiae by DNA microarrays. J. Biol. Chem. 275, 32,310–32,316.

    Article  CAS  Google Scholar 

  65. Mandaokar, A., Kumar, V. D., Amway, M., and Browse, J. (2003) Microarray and differential display identify genes involved in jasmonate-dependent anther development. Plant Mol. Biol. 52, 775–786.

    Article  CAS  Google Scholar 

  66. Gygi, S. P., Rochon, Y., Franza, B. R., and Aebersold, R. (1999) Correlation between protein and mRNA abundance in yeast. Mol. Cell Biol. 19, 1720–1730.

    CAS  Google Scholar 

  67. O’Farrell, P. H. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021.

    Google Scholar 

  68. Tuomainen, M. H., Nunan, N., Lehesranta, S. J., et al. (2006) Multivariate analysis of protein profiles of metal hyperaccumulator. Thlaspi caerulescens accessions. Proteomics 6, 3696–3706.

    Article  CAS  Google Scholar 

  69. Herald, V. L., Heazlewood, J. L., Day, D. A., and Millar, A. H. (2003) Proteomic identification of divalent metal cation binding proteins in plant mitochondria. FEBS Lett. 537, 96–100.

    Article  CAS  Google Scholar 

  70. Ferro, M., Seigneurin-Berny, D., Rolland, N., et al. (2000) Organic solvent extraction as a versatile procedure to identify hydrophobic chloroplast membrane proteins. Electrophoresis 21, 3517–3526.

    Article  CAS  Google Scholar 

  71. Molloy, M. (2000) Two-dimensional electrophoresis of membrane proteins using immobilized pH gradients. Anal. Biochem. 280, 1–10.

    Article  CAS  Google Scholar 

  72. Millar, A. H., Sweetlove, L. J., Giege, P., and Leaver, C. J. (2001) Analysis of the Arabidopsis mitochondrial proteome. Plant Physiol. 127, 1711–1727.

    Article  CAS  Google Scholar 

  73. Millar, A. H. and Heazlewood, J. L. (2003) Genomic and proteomic analysis of mitochondrial carrier proteins in Arabidopsis. Plant Physiol. 131, 443–453.

    Article  CAS  Google Scholar 

  74. Walter, G., Büssow, K., Cahill, D., Lueking, A., and Lehrach, H. (2000) Protein arrays for gene expression and molecular interaction screening. Curr. Opin.Microbiol. 3, 298–302.

    Article  CAS  Google Scholar 

  75. Tsugita, A., Kawakami, T., Uchiyama, Y., Kamo, M., Miyatake, N., and Nozu, Y.(1994).Separation and characterization of rice proteins. Electrophoresis 15, 708–720.

    Article  CAS  Google Scholar 

  76. Kamo, M., Kawakami, T., Miyatake, N., and Tsugita, A. (1995) Separation and characterization of Arabidopsis thaliana proteins by two-dimensional gel electrophoresis. Electrophoresis 16, 423–430.

    Article  CAS  Google Scholar 

  77. Tsugita, A., Kamo, M., Kawakami, T., and Ohki, Y. (1996) Two-dimensional electrophoresis of plant proteins and standardization of gel patterns. Electrophoresis 17,855–865.

    Article  CAS  Google Scholar 

  78. Komatsu, S., Muhammad, A., and Rakwal, R. (1999) Separation and characterization of proteins from green and etiolated shoots of rice (Oryza sativa L.):towards a rice proteome. Electrophoresis 20, 630–636.

    Article  CAS  Google Scholar 

  79. Chang, W. W., Huang, L., Shen, M., Webster, C., Burlingame, A. L., and Roberts, J. K. (2000) Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment, and identification of proteins by mass spectrometry. Plant Physiol. 122, 295–318.

    Article  CAS  Google Scholar 

  80. Rakwal, R. and Komatsu, S. (2000) Role of jasmonate in the rice (Oryza sativa L.) self-defense mechanism using proteome analysis. Electrophoresis 21, 2492–2500.

    Article  CAS  Google Scholar 

  81. Gallardo, K., Job, C., Groot, S. P. C., et al. (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol. 126, 835–848.

    Article  CAS  Google Scholar 

  82. Kruft, V., Eubel, H., Jansch, L., Werhahn, W., and Braun, H. P. (2001) Proteomic approach to identify novel mitochondrial proteins in Arabidopsis. Plant Physiol. 127, 1694–1710.

    Article  CAS  Google Scholar 

  83. Werhahn, W. and Braun, H. P. (2002) Biochemical dissection of the mitochondrial proteome from Arabidopsis thaliana by three-dimensional gel electrophoresis. Electrophoresis 23, 640–646.

    Article  CAS  Google Scholar 

  84. Zabrouskov, V., Giacomelli, L., Van Wijk, K. J., and McLafferty, F. W. (2003) A new approach for plant proteomics: characterization of chloroplast proteins of Arabidopsis thaliana by top-down mass spectrometry. Mol. Cell Proteomics 2, 1253–1260.

    Article  CAS  Google Scholar 

  85. Utriainen, M., Kokko, H., Auriola, S., Sarrazin, O., and Kärenlampi, S. (1998) PR-10 protein is induced by copper stress in roots and leaves of Cu/Zn tolerant clone of birch, Betula pendula. Plant Cell Environ. 21, 821–828.

    Article  CAS  Google Scholar 

  86. Koistinen, K. M., Hassinen, V. H., Gynther, P. A. M., et al. (2002) Birch PR-10c is induced by factors causing oxidative stress but appears not to confer tolerance to these agents. New Phytol. 155, 381–391.

    Article  CAS  Google Scholar 

  87. Koistinen, K. M., Kokko, H. I., Hassinen, V. H., Tervahauta, A. I., Auriola, S., and Kärenlampi, S. O. (2002) Stress-related RNase PR-10c is post-translationally modified by glutathione in birch. Plant Cell Environ. 25, 707–715.

    Article  CAS  Google Scholar 

  88. Repetto, O., Bestel-Corre, G., Dumas-Gaudot, E., Berta, G., Gianinazzi-Pearson, V., and Gianninazzi, S. (2003) Targeted proteomics to identify cadmium-induced protein modifications in Glomus mosseae-inoculated pea roots. New Phytol. 157, 555–567.

    Article  CAS  Google Scholar 

  89. Weckwerth, W. (2003) Metabolomics in systems biology. Annu. Rev. Plant Biol. 54, 669–689.

    Article  CAS  Google Scholar 

  90. Grill, E., Winnacker, E.-L., and Zenk, M. (1985) Phytochelatins: the principal heavy metal complexing peptides of higher plants. Science 230, 674–676.

    Article  CAS  Google Scholar 

  91. Zenk, M. (1996) Heavy metal detoxification in higher plants: a review. Gene 179,21–30.

    Article  CAS  Google Scholar 

  92. Cobbett, C. S. (2000) Phytochelatin biosynthesis and function in heavy metal detoxification. Curr. Opin. Plant Biol. 3, 211–216.

    CAS  Google Scholar 

  93. Bailey, N. J. C., Oven, M., Holmes, E., Nicholson, J. K., and Meinhart, H. Z.(2003) Metabolomic analysis of the consequences of cadmium exposure in Silene cucubalus cell cultures via 1H NMR spectroscopy and chemometrics. Phytochemistry 62, 851–858.

    Article  CAS  Google Scholar 

  94. Fan, T. W.-M., Lane, A. N., Shenker, M., Bartley, J. P., Crowley, D., and Higashi, R. M. (2001) Comprehensive chemical profiling of gramineous plant root exudates using high-resolution NMR and MS. Phytochemistry 57, 209–221.

    Article  CAS  Google Scholar 

  95. Lahner, B., Gong, J., Mahmoudian, M., et al. (2003) Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nat. Biotechnol. 21, 1215–1221.

    Article  CAS  Google Scholar 

  96. Nucleic Acids Research (2004) Database issue. Nucl. Acids Res. 32, 1–599.

    Article  Google Scholar 

  97. Sessions, A., Burke, E., Presting, G., et al. (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14, 2985–2994.

    Article  CAS  Google Scholar 

  98. Chuang, C. F. and Meyerowitz, E. M. (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc. Natl. Acad. Sci.USA 97, 4985–4990.

    Article  CAS  Google Scholar 

  99. Wesley, S. V, Helliwell, C. A., Smith, N. A., et al. (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 27, 581–590.

    Article  CAS  Google Scholar 

  100. Vasconcelos, M., Datta, K., Oliva, N., et al. (2003) Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci. 164, 371–378.

    Article  CAS  Google Scholar 

  101. Guo, W.-J., Bundithya, W., and Goldsbrough, P. B. (2003) Characterization of the Arabidopsis metallothionein gene family: tissue-specific expression and induction during senescence and in response to copper. New Phytol. 159, 369–381.

    Article  CAS  Google Scholar 

  102. Aarts, M. G. M. and Fiers, M. W. E. J. (2003) What drives plant stress genes? Trends Plant Sci. 8, 99–102.

    Article  CAS  Google Scholar 

  103. Rugh, C. L., Wilde, H. D., Stack, N. M., Thompson, D. M., Summers, A. O., and Meagher, R. B. (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc.Natl. Acad. Sci. USA 93, 3182–3187.

    Article  CAS  Google Scholar 

  104. Dhankher, O. P., Li, Y., Rosen, B. P., et al. (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat. Biotechnol. 20, 1140–1145.

    Article  CAS  Google Scholar 

  105. Dhankher, O. P., Shasti, N. A., Rosen, B. P., Fuhrmann, M., and Meagher, R. B.(2003) Increased cadmium tolerance and accumulation by plants expressing bacterial arsenate reductase. New Phytol. 159, 431–441.

    Article  CAS  Google Scholar 

  106. Lombi, E., Zhao, F. J., McGrath, S. P., Young, S. D., and Sacchi, G. A. (2001) Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. New Phytol. 149, 53–60.

    Article  CAS  Google Scholar 

  107. Zhao, F. J., Hamon, R. E., Lombi, E., McLaughlin, M. J., and McGrath, S. P.(2002) Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J. Exp. Bot. 53, 535–543.

    Article  CAS  Google Scholar 

  108. Linacre, N. A., Whiting, S. N., Baker, A. M., Angle, J. S., and Ades, P. K. (2003) Transgenics and phytoremediation: the need for an integrated risk assessment,management, and communication strategy. Int. J. Phytorem. 5, 181–185.

    Article  Google Scholar 

  109. Linacre, N. A. (2003) Making decisions on the release of GM crops. ISB News Report, October, 1-4.

    Google Scholar 

  110. Axelsen, K. B., and Palmgren, M. G. (2001) Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiol. 126, 696–706.

    Article  CAS  Google Scholar 

  111. Cobbett, C. S., Hussain, D., and Haydon, M. J. (2003) Structural and functional relationships between type 1B heavy metal-transporting P-type ATPases in Arabidopsis. New Phytol. 159, 315–321.

    Article  CAS  Google Scholar 

  112. Shikanai, T., Muller-Moule, P., Munekage, Y., Niyogi, K. K., and Pilon, M. (2003) PAAl, a P-type ATPase of Arabidopsis, functions in copper transport in chloroplasts. Plant Cell 15, 1333–1346.

    Article  CAS  Google Scholar 

  113. Curie, C., Alonso, J. M., Le Jean, M., Ecker, J. R., and Briat, J. F. (2000) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem.J. 347, 749–755.

    Article  CAS  Google Scholar 

  114. Thomine, S., Wang, R., Ward, J. M., Crawford, N. M., and Schroeder, J. I. (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc. Natl. Acad. Sci. USA 97, 4991–4996.

    Article  CAS  Google Scholar 

  115. van der Zaal, B. J., Neuteboom, L. W., Pinas, J. E., et al. (1999) Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol. 119, 1047–1055.

    Article  Google Scholar 

  116. Tommasini, R., Vogt, E., Fromenteau, M., et al. (1998) An ABC-transporter of Arabidopsis thaliana has both glutathione-conjugate and chlorophyll catabolite transport activity. Plant J. 13, 773–780.

    Article  CAS  Google Scholar 

  117. Bovet, L., Eggmann, T., Meylan-Bettex, M., et al. (2003) Transcript levels of AtMRPs after cadmium treatment: Induction of AtMRP3. Plant Cell Environ. 26, 371–381.

    Article  CAS  Google Scholar 

  118. Hirschi, K. D., Zhen, R. G., Cunningham, K. W., Rea, P. A., and Fink, G. R.(1996) CAX1, an H+/Ca2+ antiporter from Arabidopsis. Proc. Natl. Acad. Sci. USA 93, 8782–8786.

    Article  CAS  Google Scholar 

  119. Hirschi, K. D., Korenkov, V. D., Wilganowski, N. L., and Wagner, G. J. (2000) Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol. 124, 125–133.

    Article  CAS  Google Scholar 

  120. Shaul, O., Hilgemann, D. W., de-Almeida-Engler, J., Van Montagu, M., Inz, D., and Galili, G. (1999) Cloning and characterization of a novel Mg(2+)/H(+) exchanger. EMBO J. 18, 3973–3980.

    Article  CAS  Google Scholar 

  121. Korshunova, Y. O., Eide, D., Clark, W. G., Guerinot, M. L., and Pakrasi, H. B.(1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol. Biol. 40, 37–44.

    Article  CAS  Google Scholar 

  122. Burleigh, S. H., Kristensen, B. K., and Bechmann, I. E. (2003) A plasma membrane zinc transporter from Medicago truncatula is up-regulated in roots by Zn fertilization, yet down-regulated by arbuscular mycorrhizal colonization. Plant Mol. Biol. 52, 1077–1088.

    Article  CAS  Google Scholar 

  123. Williams, L. E., Pittman, J. K., and Hall, J. L. (2000) Emerging mechanisms for heavy metal transport in plants. Biochim. Biophys. Acta 1465, 104–126.

    Article  CAS  Google Scholar 

  124. Schachtman, D. P., Kumar, R., Schroeder, J. I. and Marsh, E. L. (1997) Molecular and functional characterization of a novel low-affinity cation transporter (LCT1) in higher plants. Proc. Natl. Acad. Sci. USA 94, 11,079–11,084.

    Article  CAS  Google Scholar 

  125. Clemens, S., Antosiewicz, D. M., Ward, J. M., Schachtman, D. P., and Schroeder, J. I. (1998) The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proc. Natl. Acad. Sci. USA 95, 12,043–12,048.

    Article  CAS  Google Scholar 

  126. Li, L., He, Z., Pandey, G. K., Tsuchiya, T., and Luan, S. (2002) Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification. J. Biol. Chem. 277, 5360–5368.

    Article  CAS  Google Scholar 

  127. Arazi, T., Sunkar, R., Kaplan, B., and Fromm, H. (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J. 20, 171–182.

    Article  CAS  Google Scholar 

  128. Zhou, J., and Goldsbrough, P. B. (1995) Structure, organization and expression of the metallothionein gene family in Arabidopsis. Mol. Gen. Genet. 248, 318–328.

    Article  CAS  Google Scholar 

  129. Murphy, A., Zhou, J., Goldsbrough, P. B., and Taiz, L. (1997) Purification and immunological identification of metallothioneins 1 and 2 from Arabidopsis thaliana. Plant Physiol. 113, 1293–1301.

    Article  CAS  Google Scholar 

  130. van Hoof, N. A., Hassinen, V. H., Hakvoort, H. W., et al. (2001) Enhanced copper tolerance in Silene vulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gene. Plant Physiol. 126, 1519–1526.

    Article  Google Scholar 

  131. Vatamaniuk, O. K., Mari, S., Lu, Y. P., and Rea, P. A. (1999) AtPCSl, a phytochelatin synthase from Arabidopsis: Isolation and in vitro reconstitution. Proc. Natl. Acad. Sci. USA 96, 7110–7115.

    Article  CAS  Google Scholar 

  132. Gisbert, C., Ros, R., De Haro, A., et al. (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem. Biophys.Res. Commun. 303, 440–445.

    Article  CAS  Google Scholar 

  133. Gong, J., Lee, D. A., and Schroeder, J. I. (2003) Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proc. Natl. Acad. Sci.USA 100, 10,118–10,123.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was funded by the E. C. 5th framework project “PHYTAC” (QLRT-2001-00429) and by the Academy of Finland (project 53885). V. H. was funded by the Finnish Graduate School for Environmental Science and Technology (EnSTe).

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Hassinen, V.H., Tervahauta, A.I., Kärenlampi, S.O. (2007). Searching for Genes Involved in Metal Tolerance, Uptake, and Transport. In: Willey, N. (eds) Phytoremediation. Methods in Biotechnology, vol 23. Humana Press. https://doi.org/10.1007/978-1-59745-098-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-098-0_21

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-541-5

  • Online ISBN: 978-1-59745-098-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics