Skip to main content

Kinetic Modeling of Biological Systems

  • Protocol
  • First Online:
Computational Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 541))

Abstract

The dynamics of how the constituent components of a natural system interact defines the spatio-temporal response of the system to stimuli. Modeling the kinetics of the processes that represent a biophysical system has long been pursued with the aim of improving our understanding of the studied system. Due to the unique properties of biological systems, in addition to the usual difficulties faced in modeling the dynamics of physical or chemical systems, biological simulations encounter difficulties that result from intrinsic multi-scale and stochastic nature of the biological processes.

This chapter discusses the implications for simulation of models involving interacting species with very low copy numbers, which often occur in biological systems and give rise to significant relative fluctuations. The conditions necessitating the use of stochastic kinetic simulation methods and the mathematical foundations of the stochastic simulation algorithms are presented. How the well-organized structural hierarchies often seen in biological systems can lead to multi-scale problems and the possible ways to address the encountered computational difficulties are discussed. We present the details of the existing kinetic simulation methods and discuss their strengths and shortcomings. A list of the publicly available kinetic simulation tools and our reflections for future prospects are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gillespie DT (1976) A general method for numerically simulating stochastic time evolution of coupled chemical-reactions. Journal of Computational Physics 22, 403–434.

    Article  CAS  Google Scholar 

  2. Gillespie DT (1977) Exact stochastic simulation of coupled chemical-reactions. Journal of Physical Chemistry 81, 2340–2361.

    Article  CAS  Google Scholar 

  3. Gillespie DT (1977) Concerning validity of stochastic approach to chemical-kinetics. Journal of Statistical Physics 16, 311–318.

    Article  Google Scholar 

  4. Gillespie DT (1992) A rigorous derivation of the chemical master equation. Physica A 188, 404–425.

    Article  CAS  Google Scholar 

  5. Arkin A, Ross J, and McAdams HH (1998) Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149, 1633–1648.

    PubMed  CAS  Google Scholar 

  6. McAdams HH and Arkin A (1997) Stochastic mechanisms in gene expression. Proceedings of the National Academy of Sciences, USA 94, 814–819.

    Article  CAS  Google Scholar 

  7. McAdams HH and Arkin A (1999) It's a noisy business! Genetic regulation at the nanomolar scale. Trends in Genetics 15, 65–69.

    Article  PubMed  CAS  Google Scholar 

  8. Bortz AB, Kalos MH, and Lebowitz JL (1975) New algorithm for Monte-Carlo simulation of Ising spin systems. Journal of Computational Physics 17, 10–18.

    Article  Google Scholar 

  9. Endy D and Brent R (2001) Modelling cellular behaviour. Nature 409, 391–395.

    Article  PubMed  CAS  Google Scholar 

  10. Gibson MA and Bruck J (2000) Efficient exact stochastic simulation of chemical systems with many species and many channels. Journal of Physical Chemistry A 104, 1876–1889.

    Article  CAS  Google Scholar 

  11. Goss PJE and Peccoud J (1998) Quantitative modeling of stochastic systems in molecular biology by using stochastic Petri nets. Proceedings of the National Academy of Sciences, USA 95, 6750–6755.

    Article  CAS  Google Scholar 

  12. Kastner J, Solomon J, and Fraser S (2002) Modeling a Hox gene network in silico using a stochastic simulation algorithm. Developmental Biology 246, 122–131.

    Article  PubMed  CAS  Google Scholar 

  13. Kepler TB and Elston TC (2001) Stochasticity in transcriptional regulation: Origins, consequences, and mathematical representations. Biophysical Journal 81, 3116–3136.

    Article  PubMed  CAS  Google Scholar 

  14. Rao CV and Arkin AP (2003) Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm. Journal of Chemical Physics 118, 4999–5010.

    Article  CAS  Google Scholar 

  15. Simpson ML, Cox CD, and Sayler GS (2003) Frequency domain analysis of noise in autoregulated gene circuits. Proceedings of the National Academy of Sciences, USA 100, 4551–4556.

    Article  CAS  Google Scholar 

  16. Smolen P, Baxter DA, and Byrne JH (1999) Effects of macromolecular transport and stochastic fluctuations on dynamics of genetic regulatory systems. American Journal of Physiology-Cell Physiology 277, C777–C790.

    CAS  Google Scholar 

  17. Levchenko A (2003) Dynamical and integrative cell signaling: challenges for the new biology. Biotechnol Bioeng 84, 773–782.

    Article  PubMed  CAS  Google Scholar 

  18. Haseltine EL and Rawlings JB (2002) Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. Journal of Chemical Physics 117, 6959–6969.

    Article  CAS  Google Scholar 

  19. Haseltine EL and Rawlings JB (2005) On the origins of approximations for stochastic chemical kinetics. Journal of Chemical Physics 123, 164115.

    Article  PubMed  Google Scholar 

  20. Puchalka J and Kierzek AM (2004) Bridging the gap between stochastic and deterministic regimes in the kinetic simulations of the biochemical reaction networks. Biophysical Journal 86, 1357–1372.

    Article  PubMed  CAS  Google Scholar 

  21. Fricke T and Wendt D (1995) The Markov Automaton – A new algorithm for simulating the time-evolution of large stochastic dynamic-systems. International Journal of Modern Physics C-Physics and Computers 6, 277–306.

    Article  Google Scholar 

  22. Elf J, Doncic A, and Ehrenberg M (2003) Mesoscopic reaction-diffusion in intracellular signaling. In: SPIE's First International Symposium on Fluctuations and Noise, pp. 114–124.

    Google Scholar 

  23. Elf J and Ehrenberg M (2003) Fast evaluation of fluctuations in biochemical networks with the linear noise approximation. Genome Research 13, 2475–2484.

    Article  PubMed  CAS  Google Scholar 

  24. Resat H, Wiley HS, and Dixon DA (2001) Probability-weighted dynamic Monte Carlo method for reaction kinetics simulations. Journal of Physical Chemistry B 105, 11026–11034.

    Article  CAS  Google Scholar 

  25. Resat H, Ewald JA, Dixon DA, and Wiley HS (2003) An integrated model of epidermal growth factor receptor trafficking and signal transduction. Biophysical Journal 85, 730–743.

    Article  PubMed  CAS  Google Scholar 

  26. Gillespie DT and Petzold LR (2003) Improved leap-size selection for accelerated stochastic simulation. Journal of Chemical Physics 119, 8229–8234.

    Article  CAS  Google Scholar 

  27. Rathinam M, Petzold LR, Cao Y, and Gillespie DT (2003) Stiffness in stochastic chemically reacting systems: The implicit tau-leaping method. Journal of Chemical Physics 119, 12784–12794.

    Article  CAS  Google Scholar 

  28. Cao Y, Gillespie DT, and Petzold LR (2006) Efficient step size selection for the tau-leaping simulation method. Journal of Chemical Physics 124, 044109.

    Article  PubMed  Google Scholar 

  29. Chatterjee A, Mayawala K, Edwards JS, and Vlachos DG (2005) Time accelerated Monte Carlo simulations of biological networks using the binomial tau-leap method. Bioinformatics 21, 2136–2137.

    Article  PubMed  CAS  Google Scholar 

  30. Chatterjee A, Vlachos DG, and Katsoulakis MA (2005) Binomial distribution based tau-leap accelerated stochastic simulation. Journal of Chemical Physics 122, 024112.

    Article  PubMed  Google Scholar 

  31. Tian TH and Burrage K (2004) Binomial leap methods for simulating stochastic chemical kinetics. Journal of Chemical Physics 121, 10356–10364.

    Article  PubMed  CAS  Google Scholar 

  32. Pettigrew MF and Resat H (2007) A multinomial tau-leaping method for stochastic kinetic simulations. Journal of Chemical Physics 126, 084101.

    Article  PubMed  Google Scholar 

  33. Stundzia AB and Lumsden CJ (1996) Stochastic simulation of coupled reaction-diffusion processes. Journal of Computational Physics 127, 196–207.

    Article  CAS  Google Scholar 

  34. Burke P, Schooler K, and Wiley HS (2001) Regulation of epidermal growth factor receptor signaling by endocytosis and intracellular trafficking. Molecular Biology of the Cell 12, 1897–1910.

    PubMed  CAS  Google Scholar 

  35. Ozcelik S, Orr G, Hu D, Chii-Shiarng C, Resat H, Harms GS, Opresko LK, Wiley HS, and Colson SD (2004) FRET measurements between small numbers of molecules identifies subtle changes in receptor interactions. Proceedings of the International Society of Optical Engineering 5323, 119–127.

    CAS  Google Scholar 

  36. Viollier PH, Thanbichler M, McGrath PT, West L, Meewan M, McAdams HH, and Shapiro L (2004) Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proceedings of the National Academy of Sciences, USA 101, 9257–9262.

    Article  CAS  Google Scholar 

  37. McAdams HH and Shapiro L (2003) A bacterial cell-cycle regulatory network operating in time and space. Science 301, 1874–1877.

    Article  PubMed  CAS  Google Scholar 

  38. Judd EM, Ryan KR, Moerner WE, Shapiro L, and McAdams HH (2003) Fluorescence bleaching reveals asymmetric compartment formation prior to cell division in Caulobacter. Proceedings of the National Academy of Sciences, USA 100, 8235–8240.

    Article  CAS  Google Scholar 

  39. Gardiner CW, McNeil KJ, Walls DF, and Matheson IS (1976) Correlations in stochastic theories of chemical reactions. Journal of Statistical Physics 14, 307–331.

    Article  Google Scholar 

  40. Chaturvedi S, Gardiner CW, Matheson IS, and Walls DF (1977) Stochastic analysis of a chemical reaction with spatial and temporal structures. Journal of Statistical Physics 17, 469–489.

    Article  Google Scholar 

  41. Gillespie DT (1992) Markov Processes: An Introduction for Physical Scientists. Academic Press, San Diego, California.

    Google Scholar 

  42. Pettigrew MF and Resat H (2005) Modeling signal transduction networks: a comparison of two stochastic kinetic simulation algorithms. Journal of Chemical Physics 123, 114707.

    Article  PubMed  Google Scholar 

  43. Ascher UM and Petzold LR (1998) Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia.

    Google Scholar 

  44. McQuarrie DA (1967) Stochastic approach to chemical kinetics. Journal of Applied Probability 4, 413–478.

    Article  Google Scholar 

  45. Gibson MA and Bruck J (1998) An efficient algorithm for generating trajectories of stochastic gene regulation reactions. California Institute of Technology Report ETR026 .

    Google Scholar 

  46. Cao Y, Li H, and Petzold LR (2004) Efficient formulation of the stochastic simulation algorithm for chemically reacting systems. Journal of Chemical Physics 121, 4059–4067.

    Article  PubMed  CAS  Google Scholar 

  47. Gillespie DT (2001) Approximate accelerated stochastic simulation of chemically reacting systems. Journal of Chemical Physics 115, 1716–1733.

    Article  CAS  Google Scholar 

  48. Cao Y, Gillespie DT, and Petzold LR (2005) Avoiding negative populations in explicit Poisson tau-leaping. Journal of Chemical Physics 123, 054104.

    Article  PubMed  Google Scholar 

  49. Gillespie DT (2000) The chemical Langevin equation. Journal of Chemical Physics 113, 297–306.

    Article  CAS  Google Scholar 

  50. Gillespie DT (2002) The chemical Langevin and Fokker-Planck equations for the reversible isomerization reaction. Journal of Physical Chemistry A 106, 5063–5071.

    Article  CAS  Google Scholar 

  51. Gillespie DT (1996) The multivariate Langevin and Fokker-Planck equations. American Journal of Physics 64, 1246–1257.

    Article  Google Scholar 

  52. Morton-Firth CJ (1998) Ph.D. thesis. Stochastic simulation of cell signalling pathways. University of Cambridge, Cambridge, UK.

    Google Scholar 

  53. Blinov ML, Faeder JR, Goldstein B, and Hlavacek WS (2004) BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20, 3289–3291.

    Article  PubMed  CAS  Google Scholar 

  54. Sauro HM, Hucka M, Finney A, Wellock C, Bolouri H, Doyle J, and Kitano H (2003) Next generation simulation tools: the Systems Biology Workbench and BioSPICE integration. Omics 7, 355–372.

    Article  PubMed  CAS  Google Scholar 

  55. Adalsteinsson D, McMillen D, and Elston TC (2004) Biochemical Network Stochastic Simulator (BioNetS): Software for stochastic modeling of biochemical networks. BMC Bioinformatics 5, 24.

    Article  PubMed  Google Scholar 

  56. Funahashi A, Tanimura N, Morohashi M, and Kitano H (2003) CellDesigner: A process diagram editor for gene-regulatory and biochemical networks. Bio Silico 1, 159–162.

    Google Scholar 

  57. Kitano H (2003) A graphical notation for biochemical networks. Bio Silico 1, 169–176.

    CAS  Google Scholar 

  58. Shapiro BE, Levchenko A, Meyerowitz EM, Wold BJ, and Mjolsness ED (2003) Cellerator: Extending a computer algebra system to include biochemical arrows for signal transduction simulations. Bioinformatics 19, 677–678.

    Article  PubMed  CAS  Google Scholar 

  59. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, and Kummer U (2006) COPASI – A COmplex PAthway SImulator. Bioinformatics 22, 3067–3074.

    Article  PubMed  CAS  Google Scholar 

  60. Ramsey S, Orrell D, and Bolouri H (2005) Dizzy: Stochastic simulation of large-scale genetic regulatory networks. Journal of Bioinformatics and Computational Biology 3, 415–436.

    Article  PubMed  CAS  Google Scholar 

  61. Takahashi K, Ishikawa N, Sadamoto Y, Sasamoto H, Ohta S, Shiozawa A, Miyoshi F, Naito Y, Nakayama Y, and Tomita M (2003) E-Cell 2: Multi-platform E-Cell simulation system. Bioinformatics 19, 1727–1729.

    Article  PubMed  CAS  Google Scholar 

  62. Takahashi K, Kaizu K, Hu B, and Tomita M (2004) A multi-algorithm, multi-timescale method for cell simulation. Bioinformatics 20, 538–546.

    Article  PubMed  CAS  Google Scholar 

  63. Dhar PK, Meng TC, Somani S, Ye L, Sakharkar K, Krishnan A, Ridwan AB, Wah SH, Chitre M, and Hao Z (2005) Grid cellware: The first grid-enabled tool for modelling and simulating cellular processes. Bioinformatics 21, 1284–1287.

    Article  PubMed  CAS  Google Scholar 

  64. Stiles JR and Bartol TM (2001) Monte Carlo methods for simulating realistic synaptic microphysiology using MCell. In: Computational Neuroscience: Realistic Modeling for Experimentalists. De Schutter E, ed., CRC Press, Boca Raton, pp. 87–127.

    Google Scholar 

  65. Hattne J, Fange D, and Elf J (2005) Stochastic reaction-diffusion simulation with MesoRD. Bioinformatics 21, 2923–2924.

    Article  PubMed  CAS  Google Scholar 

  66. Ander M, Beltrao P, Di Ventura B, Ferkinghoff-Borg J, Foglierini M, Kaplan A, Lemerle C, Tomas-Oliveira I, and Serrano L (2004) SmartCell, a framework to simulate cellular processes that combines stochastic approximation with diffusion and localisation: Analysis of simple networks. System Biology (Stevenage) 1, 129–138.

    Article  CAS  Google Scholar 

  67. Cao Y and Petzold LR 2005) Trapezoidal tau-leaping formula for the stochastic simulation of bio-chemical systems. In: Proceedings of Foundations of Systems Biology in Engineering (FOSBE 2005), pp. 149–152.

    Google Scholar 

  68. Schmidt H and Jirstrand M (2006) Systems biology toolbox for MATLAB: A computational platform for research in systems biology. Bioinformatics 22, 514–515.

    Article  PubMed  CAS  Google Scholar 

  69. Slepchenko BM, Schaff JC, Macara I, and Loew LM (2003) Quantitative cell biology with the virtual cell. Trends Cell Biology 13, 570–576.

    Article  CAS  Google Scholar 

  70. Moraru, II, Schaff JC, Slepchenko BM, and Loew LM (2002) The virtual cell: An integrated modeling environment for experimental and computational cell biology. Annals of the New York Academy of Sciences 971, 595–596.

    Article  PubMed  Google Scholar 

  71. Isaacson SA and Peskin CS (2004) Incorporating diffusion in complex geometries into stochastic chemical kinetics simulations. Courant Institute of Mathematical Sciences Report.

    Google Scholar 

  72. Mattheyses T and Simmons M (2004) Hybrid simulation of cellular behavior. Bioinformatics 20, 316–322.

    Article  PubMed  Google Scholar 

  73. Cao Y, Gillespie DT, and Petzold L (2005) The slow-scale stochastic simulation algorithm. Journal of Chemical Physics 122, 014116.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Resat, H., Petzold, L., Pettigrew, M.F. (2009). Kinetic Modeling of Biological Systems. In: Ireton, R., Montgomery, K., Bumgarner, R., Samudrala, R., McDermott, J. (eds) Computational Systems Biology. Methods in Molecular Biology, vol 541. Humana Press. https://doi.org/10.1007/978-1-59745-243-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-243-4_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-905-5

  • Online ISBN: 978-1-59745-243-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics