Skip to main content

Application of Machine Learning Techniques in Predicting MHC Binders

  • Protocol
Immunoinformatics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 409))

Summary

The machine learning techniques are playing a vital role in the field of immunoinformatics. In the past, a number of methods have been developed for predicting major histocompatibility complex (MHC)-binding peptides using machine learning techniques. These methods allow predicting MHC-binding peptides with high accuracy. In this chapter, we describe two machine learning technique-based methods, nHLAPred and MHC2Pred, developed for predicting MHC binders for class I and class II alleles, respectively. nHLAPred is a web server developed for predicting binders for 67 MHC class I alleles. This sever has two methods: ANNPred and ComPred. ComPred allows predicting binders for 67 MHC class I alleles, using the combined method [artificial neural network (ANN) and quantitative matrix] for 30 alleles and quantitative matrix-based method for 37 alleles. ANNPred allows prediction of binders for only 30 alleles purely based on the ANN. MHC2Pred is a support vector machine (SVM)-based method for prediction of promiscuous binders for 42 MHC class II alleles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, H. P. and Koziol, J. A. (1995) Prediction of binding to MHC class I molecules. J. Immunol. Methods 185,181–90.

    Article  CAS  PubMed  Google Scholar 

  2. Brusic, V., Rudy, G., and Harrison, L. (1994) Prediction of MHC binding peptide by using artificial neural networks. In Stonier, R.J., Yu, X.S. (Eds.). Complex Systems: Mechanism of Adaptation, Amsterdam, IOS Press, pp. 253–60.

    Google Scholar 

  3. Parker, K. C., Bednarek, M. A., and Coligan, J. E. (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side chains. J. Immunol. 152,163–75.

    CAS  PubMed  Google Scholar 

  4. Rammensee, H. G., Friede, T., and Stevanovic, S. (1995) MHC ligands and peptide motifs: first listing. Immunogenetics 41,178–228.

    Article  CAS  PubMed  Google Scholar 

  5. Buus, S. (1999) Description and prediction of peptide-MHC binding: the ‘‘human MHC project’’. Curr. Opin. Immunol. 11,209–13.

    Article  CAS  PubMed  Google Scholar 

  6. Zell, A. and Mamier, G. (1997) Stuttgart Neural Network Simulator version 4.2, University of Stuttgart.

    Google Scholar 

  7. Chicz, R. M., Urban, R. G., Gorga, J. C., Vignali, D. A., Lane, W.S., and Strominger, J. L. (1993) Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J. Exp. Med. 178, 27–7.

    Article  CAS  PubMed  Google Scholar 

  8. Jardetzky, T. S., Brown, J. H., Gorga, J. C., Stern, L. J., Urban, R. G., Strominger, J. L., and Wiley, D. C. (1996) Crystallographic analysis of endogenous peptides associated with HLA-DR1 suggests a common, polyproline II-like conformation for bound peptides. Proc. Natl. Acad. Sci. U.S.A. 93,734–8.

    Article  CAS  PubMed  Google Scholar 

  9. Bhasin, M. and Raghava, G. P. S. (2003) MHCBN: a comprehensive database of MHC binding and non-binding peptides. Bioinformatics 19,665–6.

    Article  CAS  PubMed  Google Scholar 

  10. Blythe, M. J., Doytchinova, I. A., and Flower, D.R. (2002) JenPep: a database of quantitative functional peptide data for immunology. Bioinformatics 18,434–9.

    Article  CAS  PubMed  Google Scholar 

  11. Joachims, T. (1999) Making large-Scale SVM learning practical. In Scholkopf, B., Burges, C., Smola, A. (Eds.). Advances in Kernel methods—support vector learning, Cambridge, MA, London, England MIIT Press, pp. 169–84.

    Google Scholar 

  12. Rock, K. L. and Goldberg, A. L. (1999) Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu. Rev. Immunol. 17,739–79.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from the Council of Scientific and Industrial Research (CSIR) and Department of Biotechnology (DBT), Government of India.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Lata, S., Bhasin, M., Raghava, G.P. (2007). Application of Machine Learning Techniques in Predicting MHC Binders. In: Flower, D.R. (eds) Immunoinformatics. Methods in Molecular Biology™, vol 409. Humana Press. https://doi.org/10.1007/978-1-60327-118-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-118-9_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-699-3

  • Online ISBN: 978-1-60327-118-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics