Skip to main content

Scaffolds for Tissue Engineering and 3D Cell Culture

  • Protocol
  • First Online:
3D Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 695))

Abstract

In tissue engineering applications or even in 3D cell cultures, the biological cross talk between cells and the scaffold is controlled by the material properties and scaffold characteristics. In order to induce cell adhesion, proliferation, and activation, materials used for the fabrication of scaffolds must possess requirements such as intrinsic biocompatibility and proper chemistry to induce molecular biorecognition from cells. Materials, scaffold mechanical properties and degradation kinetics should be adapted to the specific tissue engineering application to guarantee the required mechanical functions and to accomplish the rate of the new-tissue formation. For scaffolds, pore distribution, exposed surface area, and porosity play a major role, whose amount and distribution influence the penetration and the rate of penetration of cells within the scaffold volume, the architecture of the produced extracellular matrix, and for tissue engineering applications, the final effectiveness of the regenerative process. Depending on the fabrication process, scaffolds with different architecture can be obtained, with random or tailored pore distribution. In the recent years, rapid prototyping computer-controlled techniques have been applied to the fabrication of scaffolds with ordered geometry. This chapter reviews the principal polymeric materials that are used for the fabrication of scaffolds and the scaffold fabrication processes, with examples of properties and selected applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langer, R. and Vacanti, J. P. (1993) Tissue engineering. Science 260, 920–926.

    Article  PubMed  CAS  Google Scholar 

  2. Macarthur, B. D. and Oreffo, R. O. C. (2005) Bridging the gap. Nature 433, 19.

    Article  PubMed  CAS  Google Scholar 

  3. Nerem, R. M. and Sambanis, A. (1995) Tissue engineering: from biology to biological substitutes. Tissue Eng. 1, 3–13.

    Article  PubMed  CAS  Google Scholar 

  4. Ringe, J., Kaps, C., Burmester, G. and Sittinger, M. (2002) Stem cells for regenerative medicine: advances in the engineering of tissues and organs. Naturwissenschaften 89, 338–351.

    Article  PubMed  CAS  Google Scholar 

  5. Mooney, D. J., Sano, K., Kaufmann, P. M., Majahod, K., Schloo, B., Vacanti, J. P. and Langer, R. (1997) Long-term engraftment of hepatocytes transplanted on biodegradable polymer sponges. J. Biomed. Mater. Res. 37, 413–420.

    Article  PubMed  CAS  Google Scholar 

  6. Klouda, L. and Mikos, A. G. (2008) Thermoresponsive hydrogels in biomedical applications. Eur. J. Pharm. Biopharm. 68, 34–45.

    Article  PubMed  CAS  Google Scholar 

  7. Hutmacher, D. W. (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21, 2529–2543.

    Article  PubMed  CAS  Google Scholar 

  8. Karageorgiou, V. and Kaplan, D. (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 5474–5491.

    Article  PubMed  CAS  Google Scholar 

  9. Salem, A. K., Stevens, R., Pearson, R. G., Davies, M. C., Tendler, S. J. B., Roberts, C. J., et al. (2002) Interactions of 3T3 fibroblasts and endothelial cells with defined pore features. J. Biomed. Mater. Res. 61, 212–217.

    Article  PubMed  CAS  Google Scholar 

  10. Zeltinger, J., Sherwood, J. K., Graham, D. A., Mueller, R. and Griffith, L. G. (2001) Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng. 7, 557–572.

    Article  PubMed  CAS  Google Scholar 

  11. O’brien, F. J., Harley, B. A., Yannas, I. V. and Gibson, L. J. (2005) The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 26, 433–441.

    Article  PubMed  Google Scholar 

  12. Zhou, Y., Hutmacher, D. W., Varawan, S. L. and Lim, T. M. (2006) Effect of collagen-I modified composites on proliferation and differentiation of human alveolar osteoblasts. Aust. J. Chem. 59, 571–578.

    Article  CAS  Google Scholar 

  13. Lee, C. H., Singla, A. and Lee, Y. (2001) Biomedical applications of collagen. Int. J. Pharm. 221, 1–22.

    Article  PubMed  CAS  Google Scholar 

  14. Bensaid, W., Triffitt, J. T. and Blanchat, C. (2003) A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials 24, 2497–2502.

    Article  PubMed  CAS  Google Scholar 

  15. Pitaru, S., Tal, H., Soldinger, M., Grosskopf, A. and Noff, M. (1988) Partial regeneration of periodontal tissues using collagen barriers. Initial observations in the canine. J. Periodontol. 59, 380–386.

    PubMed  CAS  Google Scholar 

  16. Negri, S., Fila, C., Farinato, S., Bellomi, A. and Pagliaro, P. P. (2007) Tissue engineering: chondrocyte culture on type 1 collagen support. Cytohistological and immunohistochemical study. J. Tissue Eng. Regen. Med. 1, 158–159.

    Article  PubMed  CAS  Google Scholar 

  17. Zhong, S. P., Teo, W. E., Zhu, X., Beuerman, R., Ramakrishna, S. and Yung, L. Y. L. (2007) Development of a novel collagen-GAG nanofibrous scaffold via electrospinning. Mater. Sci. Eng. C. 27, 262–266.

    Article  Google Scholar 

  18. Flanagan, T. C., Wilkins, B., Black, A., Jockenhoevel, S., Smith, T. J. and Pandit, A. S. (2006) A collagen-glycosaminoglycan co-culture model for heart valve tissue engineering applications. Biomaterials 27, 2233–2346.

    Article  PubMed  CAS  Google Scholar 

  19. Di Martino, A., Sittinger, M. and Risbud, M. V. (2005) Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26, 5983–5990.

    Article  PubMed  Google Scholar 

  20. Chun, H. J., Kim, G. W. and Kim, C. H. (2008) Fabrication of porous chitosan scaffold in order to improve biocompatibility. J. Phys. Chem. Solids. 69, 1573–1576.

    Article  CAS  Google Scholar 

  21. Duarte, M. L., Ferreira, M. C., Marvão, M. R. and Rocha, J. (2001) Determination of the degree of acetylation of chitin materials by 13C CP/MAS NMR spectroscopy. Biol. Macromol. 28, 359–363.

    Article  CAS  Google Scholar 

  22. Zhou, H. Y., Chen, X. G., Kong, M., Liu, C. S., Cha, D. S. and Kennedy, J. F. (2008) Effect of molecular weight and degree of chitosan deacetylation on the preparation and characteristics of chitosan thermosensitive hydrogel as a delivery system. Carbohydr. Polym. 73, 265–273.

    Article  CAS  Google Scholar 

  23. Hsu, S. H., Whu, S., Tsai, S. L., Wu, Y. H., Chen, H. W. and Hsieh, K. H. (2004) Chitosan as scaffold materials: effects of molecular weight and degree of deacetylation. J. Polym. Res. 11, 141–147.

    Article  CAS  Google Scholar 

  24. Birk, D. E., Lande, M. A. and Fernandez-Madrid, F. R. (1981) Collagen and glycosaminoglycan synthesis in aging human keratocyte cultures. Exp. Eye Res. 32, 331–339.

    Article  PubMed  CAS  Google Scholar 

  25. Weiss, C., Balazs, E. A., St.Onge, R. and Denlinger, J. L. (1981) Clinical studies of the intraarticular injection of HealonR (sodium hyaluronate) in the treatment of osteoarthritis of human knees. Semin. Arthritis Rheum. 11, 143–144.

    Article  Google Scholar 

  26. Holzman, S. and Connolly, R. J. (1994) Effect of hyaluronic acid solution on healing of bowel anastomoses. J. Invest. Surg. 7, 431–437.

    Article  PubMed  CAS  Google Scholar 

  27. Grigolo, B., Lisignoli, G., Piacentini, A., Fiorini, M., Roseti, L., Major, E. O., et al. (2001) Evidence for re-differentiation of human chondrocytes seeded on a hyaluronan derivative scaffold. Arthritis Res. 3, P7.

    Article  Google Scholar 

  28. Marcacci, M., Kon, E., Zaffagnini, S., Iacono, F., Filardo, G. and Delcogliano, M. (2006) Autologous chondrocytes in a hyaluronic acid scaffold. Oper. Tech. Orthop. 16, 266–270.

    Article  Google Scholar 

  29. Giordano, C., Sanginario, V., Ambrosio, L., Silvio, L. D. and Santin, M. (2006) Chemical-physical characterization and in vitro preliminary biological assessment of hyaluronic acid benzyl ester-hydroxyapatite composite. J. Biomater. Appl. 20, 237–252.

    Article  PubMed  CAS  Google Scholar 

  30. Heden, P., Sellman, G., Von Wachenfeldt, M., Olenius, M. and Fagrell, D. (2009) Body shaping and volume restoration: the role of hyaluronic acid. Aesthetic Plast. Surg. 33, 274–282.

    Article  PubMed  Google Scholar 

  31. Duranti, F., Salti, G., Bovani, B., Calandra, M. and Rosati, M. L. (1998) Injectable hyaluronic acid gel for soft tissue augmentation. A clinical and histological study. Dermatol Surg. 24, 1317–1325.

    Article  PubMed  CAS  Google Scholar 

  32. Motta, A., Fambri, L. and Migliaresi, C. (2002) Regenerated silk fibroin films: thermal and dynamic mechanical analysis. Macromol. Chem. Phys. 203, 1658–1665.

    Article  CAS  Google Scholar 

  33. Motta, A., Migliaresi, C., Lloyd, A. W., Denyer, S. P. and Santin, M. (2002) Serum protein adsorption on silk fibroin fibres and membranes: surface opsonization and binding strength. J. Bioact. Compat. Polym. 17, 23–35.

    Article  CAS  Google Scholar 

  34. Rahfoth, B., Weisser, J., Sternkopf, F., Aigner, T., Von Der Mark, K. and Bräuer, R. (1998) Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits. Osteoarthr. Cartil. 6, 50–65.

    Article  PubMed  CAS  Google Scholar 

  35. Orive, G., Hernandez, R. M., Gascon, A. R., Calafiore, R., Chang, T. M. S., de Vos, P., Hortelano, G., Hunkeler, D., Lacik, I., Pedraz, J. L. (2004) History, challenges and perspectives of cell microencapsulation. Trends Biotechnol. 22, 87–92.

    Article  PubMed  CAS  Google Scholar 

  36. Dvir-Ginzberg, M., Gamlieli-Bonshtein, I., Agbaria, R. and Cohen, S. (2003) Liver tissue engineering within alginate scaffolds: effects of cell-seeding density on hepatocyte viability, morphology, and function. Tissue Eng. 9, 757–766.

    Article  PubMed  CAS  Google Scholar 

  37. Kaur, L., Singh, J. and Liu, Q. (2007) Starch – a potential biomaterial for biomedical applications. In Nanomaterials and nanosystems for biomedical applications, Reza, M. ed., Springer, Netherlands.

    Google Scholar 

  38. Pereira, C. S., Cunha, A. M., Reis, R. L., Vazquez, B. and San Roman, J. (1988) New starch-based thermoplastic hydrogels for use as bone cements or drug-delivery carriers. J. Mater. Sci. Mater. Med. 9, 825–833.

    Article  Google Scholar 

  39. Reis, R. L., Mendes, S. C., Cunha, A. M. and Bevis, M. J. (1997) Processing and in-vitro degradation of starch/EVOH thermoplastic blends. Polym. Int. 43, 347–353.

    Article  CAS  Google Scholar 

  40. Marques, A. P., Reis, R. L. and Hunt, J. A. (2003) Evaluation of the potential of starch-based biodegradable polymers in the activation of human inflammatory cells. J. Mater. Sci. Mater. Med. 14, 167–173.

    Article  PubMed  CAS  Google Scholar 

  41. Gomes, M., Reis, R. L., Cunha, A. M., Blitterswijk, C. A. and De Bruijn, J. D. (2001) Cytocompatibility and response of osteoblastic-like cells to starch-based polymers: effect of several additives and processing conditions. Biomaterials 22, 1911–1917.

    Article  PubMed  CAS  Google Scholar 

  42. Gomes, M. E., Ribeiro, A. S., Malafaya, P. B., Reis, R. L. and Cunha, A. M. (2001) A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: morphology, mechanical and degradation behaviour. Biomaterials 22, 883–889.

    Article  PubMed  CAS  Google Scholar 

  43. Gunatillake, P. A. and Adhikari, R. (2003) Biodegradable synthetic polymer for tissue engineering. Eur. Cell Mater. 5, 1–16.

    PubMed  CAS  Google Scholar 

  44. Yang, F., Cui, W., Xiong, Z., Liu, L., Bei, J. and Wang, S. (2006) Poly(l,l-lactide-co-glycolide)/tricalcium phosphate composite scaffold and its various changes during degradation in vitro. Polym. Degrad. Stab. 91, 3065–3073.

    Article  CAS  Google Scholar 

  45. Schieker, M., Seitz, H., Drosse, I., Seitz, S. and Mutschler, W. (2006) Biomaterials as scaffold for bone tissue engineering. Eur. J. Trauma. 32, 114–124.

    Article  Google Scholar 

  46. Mooney, D. J., Baldwin, D. F., Suh, N. P., Vacanti, J. P. and Langer, R. (1996) Novel approach to fabricate porous sponges of poly(d,l-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17, 1417–1422.

    Article  PubMed  CAS  Google Scholar 

  47. Athanasiou, K. A., Niederauer, G. G. and Agrawal, C. M. (1996) Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17, 93–102.

    Article  PubMed  CAS  Google Scholar 

  48. Bostman, O., Partio, E., Hirvensalo, E. and Rokkanen, P. (1992) Foreign-body reactions to polyglycolide screws. Acta Orthop. 63, 173–176.

    Article  CAS  Google Scholar 

  49. Jenkins, M. J. and Harrison, K. L. (2008) The effect of crystalline morphology on the degradation of polycaprolactone in a solution of phosphate buffer and lipase. Polym. Adv. Technol. 19, 1901–1906.

    Article  CAS  Google Scholar 

  50. Hongfan, S., Lin, M., Cunxian, S., Xiumin, C. and Pengyan, W. (2006) The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials 27, 1735–1740.

    Article  Google Scholar 

  51. Mcdevitt, T. C., Woodhouse, K. A., Hauschka, S. D., Murry, C. E. and Stayton, P. S. (2003) Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair. J. Biomed. Mater. Res. A. 66, 586–595.

    Article  PubMed  Google Scholar 

  52. Stankus, J. J., Guan, J. and Wagner, W. R. (2004) Fabrication of biodegradable elastomeric scaffolds with sub-micron morphologies. J. Biomed. Mater. Res. A. 70A, 603–614.

    Article  CAS  Google Scholar 

  53. Heller, J., Barr, J., Ng, S. Y., Shen, H. R., Schwach, A. K., Emmahal, S., et al. (2000) Poly(ortho esters): their development and some recent applications. Eur. J. Pharm. Biopharm. 50, 121–128.

    Article  PubMed  CAS  Google Scholar 

  54. Andriano, K. P., Tabata, Y., Ikada, Y. and Heller, J. (1999) In vitro and in vivo comparison of bulk and surface hydrolysis in absorbable polymer scaffolds for tissue engineering. J. Biomed. Mater. Res. 48, 602–612.

    Article  PubMed  CAS  Google Scholar 

  55. Chasin, M. and Langer, R. (1990) Biodegradable polymers as drug delivery systems. In Drugs and the pharmaceutical sciences, Chasin, M. and Langer, R. eds., Marcel Dekker, New York.

    Google Scholar 

  56. Burkoth, A. K. and Anseth, K. S. (2000) A review of photocrosslinked polyanhydrides: in situ forming degradable networks. Biomaterials 21, 2395–2404.

    Article  PubMed  CAS  Google Scholar 

  57. Williams, D. F. and Zhong, S. P. (1994) Biodeterioration/biodegradation of polymeric medical devices in situ. Int. Biodeter. Biodegrad. 34, 95–130.

    Article  CAS  Google Scholar 

  58. Labow, R. S., Tang, Y., Mccloskey, C. B. and Santerre, J. P. (2002) The effect of oxidation on the enzyme-catalyzed hydrolytic biodegradation of poly(urethane)s. J. Biomater. Sci. Polym. Ed. 13, 651–665.

    Article  PubMed  CAS  Google Scholar 

  59. Coleman, J. W. (2001) Nitric oxide in immunity inflammation. Int. Immunopharm. 1, 1397–1406.

    Article  CAS  Google Scholar 

  60. Hutmacher, D. W., Sittinger, M. and Risbud, M. V. (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol. 22, 354–362.

    Article  PubMed  CAS  Google Scholar 

  61. Fedorovich, N. E., Alblas, J., De Wijn, J. R., Hennink, W. E., Verbout, A. J. and Dhert, W. J. (2007) Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng. 13, 1905–1925.

    Article  PubMed  CAS  Google Scholar 

  62. Mironov, V., Boland, T., Trusk, T., Forgacs, G. and Markwald, R. R. (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 21, 157–161.

    Article  PubMed  CAS  Google Scholar 

  63. Siemann, U. (2005) Solvent cast technology: a versatile tool for thin film production. Prog. Colloid Polym. Sci. 130, 1–14.

    CAS  Google Scholar 

  64. Kim, H. J., Kim, U. J., Leisk, G. G., Bayan, C., Georgakoudi, I. and Kaplan, D. L. (2007) Bone regeneration on macroporous aqueous-derived silk 3D scaffolds. Macromol. Biosci. 7, 643–655.

    Article  PubMed  CAS  Google Scholar 

  65. Pattison, M. A., Wurster, S., Webster, T. J. and Haberstroh, K. M. (2005) Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications. Biomaterials 26, 2491–2500.

    Article  PubMed  CAS  Google Scholar 

  66. Yoon, J. J., Song, S. H., Lee, D. S. and Park, T. G. (2004) Immobilization of cell adhesive RGD peptide onto the surface of highly porous biodegradable polymer scaffolds fabricated by a gas foaming/salt leaching method. Biomaterials 25, 5613–5620.

    Article  PubMed  CAS  Google Scholar 

  67. Shin, M., Abukawa, H., Troulis, M. J. and Vacanti, J. P. (2008) Development of a biodegradable scaffold with interconnected pores by heat fusion and its application to bone tissue engineering. J. Biomed. Mater. Res. A. 84A, 702–709.

    Article  CAS  Google Scholar 

  68. Lv, Q. and Feng, Q. (2006) Preparation of 3-D regenerated fibroin scaffolds with freeze drying method and freeze drying/foaming technique. J. Mater. Sci. Mater. Med. 17, 1349–1356.

    Article  PubMed  CAS  Google Scholar 

  69. Zhang, H., Hussain, I., Brust, M., Butler, M. F., Rannard, S. P. and Cooper, A. I. (2005) Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. Nat. Mater. 4, 787–793.

    Article  PubMed  CAS  Google Scholar 

  70. Xu, C. Y., Inai, R., Kotaki, M. and Ramakrishna, S. (2004) Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials 25, 877–886.

    Article  PubMed  CAS  Google Scholar 

  71. Faizal, C. K. M., Kikuchi, Y. and Kobayashi, T. (2009) Molecular imprinting targeted for [alpha]-tocopherol by calix[4]resorcarenes derivative in membrane scaffold prepared by phase inversion. J. Memb. Sci. 334, 110–116.

    Article  CAS  Google Scholar 

  72. Ma, D. and Mchugh, A. J. (2007) The interplay of phase inversion and membrane formation in the drug release characteristics of a membrane-based delivery system. J. Memb. Sci. 298, 156–168.

    Article  CAS  Google Scholar 

  73. Kim, S. Y., Kanamori, T., Noumi, Y., Wang, P. C. and Shinbo, T. (2004) Preparation of porous poly(d,l-lactide) and poly(d,l-lactide-co-glycolide) membranes by a phase inversion process and investigation of their morphological changes as cell culture scaffolds. J. Appl. Polym. Sci. 92, 2082–2092.

    Article  CAS  Google Scholar 

  74. Duarte, A. R. C., Mano, J. F. and Reis, R. L. (2009) Dexamethasone-loaded scaffolds prepared by supercritical-assisted phase inversion. Acta. Biomater. 5, 2054–2062.

    Article  PubMed  CAS  Google Scholar 

  75. Tsivintzelis, I., Pavlidou, E. and Panayiotou, C. (2007) Porous scaffolds prepared by phase inversion using supercritical CO2 as antisolvent: I. Poly(l-lactic acid). J. Supercrit. Fluids. 40, 317–322.

    Article  CAS  Google Scholar 

  76. Duarte, A. R. C., Mano, J. F. and Reis, R. L. (2009) Preparation of starch-based scaffolds for tissue engineering by supercritical immersion precipitation. J Supercrit. Fluids. 49, 279–285.

    Article  CAS  Google Scholar 

  77. Duarte, A. R. C., Caridade, S. G., Mano, J. F. and Reis, R. L. (2009) Processing of novel bioactive polymeric matrixes for tissue engineering using supercritical fluid technology. Mater. Sci. Eng. C. 29, 2110–2115.

    Article  CAS  Google Scholar 

  78. Tsivintzelis, I., Pavlidou, E. and Panayiotou, C. (2007) Biodegradable polymer foams prepared with supercritical CO2-ethanol mixtures as blowing agents. J. Supercrit. Fluids. 42, 265–272.

    Article  CAS  Google Scholar 

  79. Jang, J. H. and Shea, L. D. (2003) Controllable delivery of non-viral DNA from porous scaffolds. J. Control. Release. 86, 157–168.

    Article  PubMed  CAS  Google Scholar 

  80. Sheridan, M. H., Shea, L. D., Peters, M. C. and Mooney, D. J. (2000) Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J. Control. Release. 64, 91–102.

    Article  PubMed  CAS  Google Scholar 

  81. Li, D. and Xia, Y. (2004) Electrospinning of nanofibers: reinventing the wheel? Adv. Mater. 16, 1151–1170.

    Article  CAS  Google Scholar 

  82. Liang, D., Hsiao, B. S. and Chu, B. (2007) Functional electrospun nanofibrous scaffolds for biomedical applications. Adv. Drug Deliv. Rev. 59, 1392–1412.

    Article  PubMed  CAS  Google Scholar 

  83. Huang, Z. M., Zhang, Y. Z., Kotaki, M. and Ramakrishna, S. (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Comp. Sci. Technol. 63, 2223–2253.

    Article  CAS  Google Scholar 

  84. Zong, X., Bien, H., Chung, C. Y., Yin, L., Fang, D., Hsiao, B. S., et al. (2005) Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials 26, 5330–5338.

    Article  PubMed  CAS  Google Scholar 

  85. Zhang, Y. Z., Huang, Z. M., Xu, X., Lim, C. T. and Ramakrishna, S. (2004) Preparation of core-shell structured PCL-r-gelatin bi-component nanofibers by coaxial electrospinning. Chem. Mater. 16, 3406–3409.

    Article  CAS  Google Scholar 

  86. Lee, Y. H., Lee, J. H., An, I. G., Kim, C., Lee, D. S., Lee, Y. K., et al. (2005) Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds. Biomaterials 26, 3165–3172.

    Article  PubMed  CAS  Google Scholar 

  87. Wang, W. L., Cheah, C. M., Fuh, J. Y. H. and Lu, L. (1996) Influence of process parameters on stereolithography part shrinkage. Mater. Des. 17, 205–213.

    Article  CAS  Google Scholar 

  88. Harris, R. A., Hague, R. J. M. and Dickens, P. M. (2003) Crystallinity control in parts produced from stereolithography injection mould tooling. Proc. Inst Mech Eng L: J. Mater. Des. Appl. 217, 269–276.

    Google Scholar 

  89. Rimell, J. T. and Marquis, P. M. (2000) Selective laser sintering of ultra high molecular weight polyethylene for clinical applications. J. Biomed. Mater. Res. 53, 414–420.

    Article  PubMed  CAS  Google Scholar 

  90. Vail, N. K., Swain, L. D., Fox, W. C., Aufdemorte, T. B., Lee, G. and Barlow, J. W. (1999) Solid freeform fabrication proceedings. Mater. Des. 20, 123–132.

    Article  CAS  Google Scholar 

  91. Curodeau, A., Sachs, E. and Caldarise, S. (2000) Design and fabrication of cast orthopedic implants with freeform surface textures from 3-D printed ceramic shell. J. Biomed. Mater. Res. 53, 525–535.

    Article  PubMed  CAS  Google Scholar 

  92. Giordano, C., Russell, A., Wu, B. M., Borlanda, S. W., Cima, L. G., Sachs, E. M., et al. (1997) Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. Biomater. Sci. 8, 63–75.

    Article  Google Scholar 

  93. Lam, C. X. F., Mox, M., Teoh, S. H. and Hutmacher, D. W. (2002) Scaffold development using 3D printing with a starch-based polymer. Mater. Sci. Eng. C. 20, 49–56.

    Article  Google Scholar 

  94. Sachs, E. M., Haggerty, J. S., Cima, M. J. and Williams, P. A. (1993) Three-dimensional printing techniques. US Patent 5,204,055.

    Google Scholar 

  95. Marra, K. G., Szem, J. W., Kumta, P. N., Dimilla, P. A. and Weiss, L. W. (1999) In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering. J. Biomed. Mater. Res. A. 47, 324–335.

    Article  CAS  Google Scholar 

  96. Hutmacher, D. W. (2000) Polymeric scaffolds in tissue engineering bone and cartilage. Biomaterials 21, 2529–2543.

    Article  PubMed  CAS  Google Scholar 

  97. Comb, J. W., Priedeman, W. R. and Turley, P. W. (1994) FDM technology process improvements. In: Proceedings of Solid Freeform Fabrication Symposium, Austin, Tex, 42–49.

    Google Scholar 

  98. Zein, I., Hutmacher, D. W., Tan, K. C. and Teoh, S. H. (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23, 1169–1185.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Migliaresi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Carletti, E., Motta, A., Migliaresi, C. (2011). Scaffolds for Tissue Engineering and 3D Cell Culture. In: Haycock, J. (eds) 3D Cell Culture. Methods in Molecular Biology, vol 695. Humana Press. https://doi.org/10.1007/978-1-60761-984-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-984-0_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-983-3

  • Online ISBN: 978-1-60761-984-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics