Skip to main content

Immunocytochemistry, Electron Tomography, and Energy Dispersive X-ray Spectroscopy (EDXS) on Cryosections of Human Cancer Cells Doped with Stimuli Responsive Polymeric Nanogels Loaded with Iron Oxide Nanoparticles

  • Protocol
  • First Online:
Nanomaterial Interfaces in Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1025))

Abstract

The cryosectioning technique is an alternative method for preparing biological material for Transmission Electron Microscopy (TEM). We have applied this technique to study the mechanism of cell internalization of stimuli-responsive polymeric nanogels exploited as cargo nanovectors. With respect to conventional TEM processing, cryosectioning technique better preserves the morphology of solvent-sensitive nanogels and enhances the visibility of membrane-bounded organelles inside the cell cytoplasm. In this chapter we describe the protocols we have established to perform Electron Microscopy (EM)-immunocytochemistry, Electron Tomography (ET), and Energy Dispersive X-ray Spectroscopy (EDXS) chemical analysis in Scanning TEM (STEM) on cryosections of HeLa cells treated with pH-responsive nanogels hosting short interference RNA (siRNAs) and iron oxide nanoparticles (IONPs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tokuyasu KT (1973) A technique for ultracryotomy of cell suspensions and tissues. J Cell Biol 57:551–565

    Article  CAS  Google Scholar 

  2. Liou W, Geuze HJ, Slot JW (1996) Improving structural integrity of cryosections for immunogold labeling. Histochem Cell Biol 106:41–58

    Article  CAS  Google Scholar 

  3. Webster P (1999) The production of cryosections through fixed and cryoprotected biological materials and their use in immunocytochemistry. In: Nasser Hajibagheri MA (ed) Electron microscopy methods and protocols, vol 117. Humana Press, Totowa, NJ, pp 49–76

    Chapter  Google Scholar 

  4. Posthuma G, van Donselaar E, Griffith J, Oorschot VMJ, van Dijk S, Slot JW (eds) (2006) Ultrathin cryo-sectioning and immuno – gold labeling. A practical introduction. Cell Microscopy Center, Department of Cell Biology, University Medical Center Utrecht, The Netherlands

    Google Scholar 

  5. Murk J, Postuma G, Koster AJ, Guuze HJ, Verkleij AJ, Kleijmeer MJ, Humbel BM (2003) Influence of aldehyde fixation on the morphology of endosomes and lysosomes: quantitative analysis and electron tomography. J Microsc 212:81–90

    Article  CAS  Google Scholar 

  6. Curcio A, Marotta R, Riedinger A, Palumberi D, Falqui A, Pellegrino T (2012) Magnetic pH-responsive nanogels as multifunctional delivery tool for small interfering RNA molecules and iron oxide nanoparticles. Chem Commun 28(48):2400–2402

    Article  Google Scholar 

  7. Laurent S, Dutz S, Häfeli U, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 166:8–23

    CAS  Google Scholar 

  8. Gazeau F, Lévy M, Wilhelm C (2008) Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine 3(6):831–844

    Article  CAS  Google Scholar 

  9. Pradhan P, Giri J, Rieken F, Koch C, Mykhaylyk O, Döblinger M, Banerjee R, Bahadur D, Plank C (2010) Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J Control Release 142(1):108–121

    Article  CAS  Google Scholar 

  10. Liu T, Liu K, Liu D, Chen S, Chen I (2009) Temperature-sensitive nanocapsules for controlled drug release caused by magnetically triggered structural disruption. Adv Funct Mater 19(4):616–623

    Article  CAS  Google Scholar 

  11. Deka S, Quarta A, Di Corato R, Riedinger A, Cingolani R, Pellegrino T (2011) Magnetic nanobeads decorated by thermo-responsive PNIPAM shell as medical platforms for the efficient delivery of doxorubicin to tumour cells. Nanoscale 3(2):619–629

    Article  CAS  Google Scholar 

  12. Chen S, Li Y, Guo C, Wang J, Ma J, Liangs X, Yang L, Liu H (2007) Temperature-responsive magnetite/PEO-PPO-PEO block copolymer nanoparticles for controlled drug targeting delivery. Langmuir 23(25):12669–12676

    Article  CAS  Google Scholar 

  13. Louguet S, Rousseau B, Epherre R, Guidolin N, Goglio G, Mornet S, Duguet E, Lecommandoux S, Schatz C (2012) Thermoresponsive polymer brush-functionalized magnetic manganite nanoparticles for remotely triggered drug release. Polym Chem 3:1408–1417

    Article  CAS  Google Scholar 

  14. Morgan AJ, Winters C, Stürzenbaum S (1999) X-ray microanalysis techniques. In: Hajibagheri MAN (ed) Electron microscopy methods and protocols, vol 117. Humana Press, Totowa, NJ, pp 245–276

    Chapter  Google Scholar 

  15. Frank J (2005) Electron tomography. Methods for three-dimensional visualization of structures in the cell, 2nd edn. Springer, Albany, NY

    Google Scholar 

  16. Porter AE, Muller K, Skepper J, Midgley P, Welland M (2006) Uptake of C60 by human monocyte macrophages, its localization and implications for toxicity studied by high resolution electron microscopy and electron tomography. Acta Biomater 2:406–419

    Article  Google Scholar 

  17. Sousa AA, Aronova MA, Kim YC, Dorward LM, Zhang G, Leapman RD (2007) On the feasibility of visualizing ultrasmall gold labels in biological specimens by STEM tomography. J Struct Biol 159:507–522

    Article  CAS  Google Scholar 

  18. Uchida M, Willits DA, Muller K, Willis AF, Jackiw L, Jutila M, Young MJ, Porter AE, Douglas T (2008) Intracellular distribution of macrophage targeting ferritin–iron oxide nanocomposite. Adv Mater 21(4):458–462

    Article  Google Scholar 

  19. Cai X, Chen HH, Wang CL, Chen ST, Lai SF, Chien CC, Chen YY, Kempson IM, Hwu Y, Yang CS, Margaritondo G (2011) Imaging the cellular uptake of tiopronin-modified gold nanoparticles. Anal Bioanal Chem 401:809–816

    Article  CAS  Google Scholar 

  20. Nair BJ, Fukuda T, Mizuki T, Hanajiri T, Maekawa T (2012) Intracellular trafficking of superparamagnetic iron oxide nanoparticles conjugated with TAT peptide: 3-dimensional electron tomography analysis. Biochem Biophys Res Commun 421:763–767

    Article  CAS  Google Scholar 

  21. Vicidomini G, Gagliani MC, Cortese K, Krieger J, Buescher P, Bianchini P, Boccacci P, Tacchetti C, Diaspro A (2010) A novel approach for correlative light electron microscopy analysis. Microsc Res Tech 73:215–224

    Google Scholar 

  22. Sigee DC, Morgan AJ, Sumner AT, Warley A (eds) (1993) X-ray microanalysis in biology. Experimental techniques and applications. Cambridge University Press, Cambridge

    Google Scholar 

  23. Laquerriere P, Banchet V, Michel J, Zierod K, Balossier G, Bonhomme P (2001) X-ray microanalysis of organic thin sections in TEM using an UTW Si(Li) detector: comparison of quantification methods. Microsc Res Tech 52:231–238

    Article  CAS  Google Scholar 

  24. D’Alfonso AJ, Freitag B, Klenov D, Allen LJ (2010) Atomic-resolution chemical mapping using energy-dispersive x-ray spectroscopy. Phys Rev 81:100101(R)

    Google Scholar 

  25. Busch W, Bastian S, Trahorsch U, Iwe M, Kuhnel D, Meißner T, Springer A, Gelinsky M, Richter V, Ikonomidou C, Potthoff A, Lehmann I, Schirmer K (2011) Internalisation of engineered nanoparticles into mammalian cells in vitro: influence of cell type and particle properties. J Nanopart Res 13:293–310

    Article  CAS  Google Scholar 

  26. Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116(1):71–76

    Article  CAS  Google Scholar 

  27. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem 13:1605–1612

    Article  Google Scholar 

  28. Donohoe BS, Mogelsvang S, Staehelin LA (2006) Electron tomography of ER, Golgi and related membrane systems. Methods 39:154–162

    Article  CAS  Google Scholar 

  29. Egerton RF, Li P, Malac M (2004) Radiation damage in the TEM and SEM. Micron 35:399–409

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Marotta, R., Falqui, A., Curcio, A., Quarta, A., Pellegrino, T. (2013). Immunocytochemistry, Electron Tomography, and Energy Dispersive X-ray Spectroscopy (EDXS) on Cryosections of Human Cancer Cells Doped with Stimuli Responsive Polymeric Nanogels Loaded with Iron Oxide Nanoparticles. In: Bergese, P., Hamad-Schifferli, K. (eds) Nanomaterial Interfaces in Biology. Methods in Molecular Biology, vol 1025. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-462-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-462-3_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-461-6

  • Online ISBN: 978-1-62703-462-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics