Skip to main content

Turning of AISI 4140 (42CrMo4): A Novel Sub-zero Cooling Approach

  • Conference paper
  • First Online:
Advances in Production Research (WGP 2018)

Abstract

In this paper, a novel cooling strategy for machining is presented: a metalworking fluid, composed of water and a polyhydric alcohol is supplied to the cutting zone at temperatures above the temperatures used for cryogenic machining, but below 0 °C. This sub-zero metalworking fluid (MWF) is applied when turning AISI 4140 at varied cutting speed. The results are compared with those obtained using emulsion, cryogenics as well as dry turning. An analysis of temperatures, forces, tool wear as well as surface roughness is carried out. The use of the novel sub-zero MWF results in low tool temperatures and tool wear. In contrast to cryogenic and dry machining, a constant surface roughness was observed in the case of severe tool wear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Naming of specific manufacturers is done solely for the sake of completeness and does not necessarily imply an endorsement of the named companies nor that the products are necessarily the best for the purpose.

References

  1. Brinksmeier, E., Meyer, D., et al.: Metalworking fluids – mechanisms and performance. CIRP Ann. Manuf. Technol. 64, 605–628 (2015)

    Article  Google Scholar 

  2. Jawahir, I.S., Attia, H., et al.: Cryogenic manufacturing processes. CIRP Ann. Manuf. Technol. 65, 713–736 (2016)

    Article  Google Scholar 

  3. Mazurkiewicz, M., Kubala, Z., et al.: Metal machining with high-pressure water-jet cooling assistance – a new possibility. J. Eng. Ind. 111, 7–12 (1989)

    Article  Google Scholar 

  4. Hribersek, M., Sajn, V., et al.: The procedure of solving the inverse problem for determining surface heat transfer coefficient between liquefied nitrogen and inconel 718 workpiece in cryogenic machining. J. Mech. Eng. 58, 617–622 (2017)

    Google Scholar 

  5. Dix, M., Wertheim, R., et al.: Modeling of drilling assisted by cryogenic cooling for higher efficiency. CIRP Ann. Manuf. Technol. 63, 73–76 (2014)

    Article  Google Scholar 

  6. Zhang, X., Yamaguchi, H.: An experimental study on heat transfer of CO2 solid-gas two phase flow with dry ice sublimation. Int. J. Therm. Sci. 50, 2228–2234 (2011)

    Article  Google Scholar 

  7. Basten, S., Mayer, P., et al.: Kryogener Kühlschmierstoff auf der Basis von Ethylenglykol. ZWF - Zeitschrift für wirtschaftlichen Fabrikbetrieb 111, 444–448 (2016)

    Article  Google Scholar 

  8. Yildiz, Y., Nalbant, M.: A review of cryogenic cooling in machining processes. Int. J. Mach. Tools Manuf. 48, 947–1062 (2008)

    Article  Google Scholar 

  9. Aurich, J.C., Basten, S., et al.: Verfahren zum Betrieb einer spanenden Werkzeugmaschine und Werkzeugmaschine für die spanende Bearbeitung von Werkstücken. Deutsches Patentamt. DE 10 2016 215 545 B3

    Google Scholar 

  10. Kirsch, B., Basten, S., et al.: Sub-zero cooling: a novel strategy for high performance cutting. CIRP Ann. Manuf. Technol. 67(1), 95–98 (2018)

    Article  Google Scholar 

  11. Tomala, A., Karpinska, A., et al.: Tribological properties of additives for water-based lubricants. Wear 269(11–12), 804–810 (2010)

    Article  Google Scholar 

  12. Basten, S., Kirsch, B., et al.: Neue kryogene Kühlstrategie für die Zerspanung. Maschinenmarkt 13, 24–28 (2017)

    Google Scholar 

  13. Nouaria, M., Molinarib, A.: Experimental verification of a diffusion tool wear model using a 42CrMo4 steel with an uncoated cemented tungsten carbide at various cutting speeds. Wear 259(7–12), 1151–1159 (2005)

    Article  Google Scholar 

  14. ISO 3685: Tool life testing with single-point turning tools (1993)

    Google Scholar 

  15. Balaji, A., Sreeram, G., et al.: The effects of cutting tool thermal conductivity on tool-chip contact length and chip formation in machining with grooved tools. CIRP Ann. Manuf. Technol. 48, 33–38 (1999)

    Article  Google Scholar 

  16. Kaynak, Y., Gharibi, A.: Progressive tool wear in cryogenic machining: the effect of liquid nitrogen and carbon dioxide. J. Manuf. Mater. Process. 2(2), Paper 31 (2018)

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the German Research Foundation (DFG) for the financial support within the CRC 926 ‘‘Microscale Morphology of Component Surfaces’’ and further Petrofer Chemie as well as Borg Warner Turbo Systems for the cooperation and the test materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Basten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Basten, S., Kirsch, B., Hasse, H., Aurich, J.C. (2019). Turning of AISI 4140 (42CrMo4): A Novel Sub-zero Cooling Approach. In: Schmitt, R., Schuh, G. (eds) Advances in Production Research. WGP 2018. Springer, Cham. https://doi.org/10.1007/978-3-030-03451-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03451-1_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03450-4

  • Online ISBN: 978-3-030-03451-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics