Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 141 Accesses

Abstract

As previously mentioned in the introductory chapter, studying the degradation of biocomposites is a time and resource-consuming process. Therefore it is logical to try and maximise the information that can be extracted from already published experimental data. Although inaccurate and incomplete information in composite characterisation are to be expected, analysing these published degradation data with the computational models obtained from the general modelling framework based on an extended version of Pan et al.’s TCP-polyester composite degradation model [1] and presented in Chap. 3 is, in the author’s opinion, still a worthy approach. By doing so, a global degradation map for biocomposites can be built. This map, albeit incomplete, will aid understanding of the biocomposite degradation mechanisms and highlight areas of particular interest due to their appropriate degradation profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pan, J., Han, X., Niu, W., & Cameron, R. E. (2011). A model for biodegradation of composite materials made of polyesters and tricalcium phosphates. Biomaterials, 32(9), 2248–2255.

    Article  CAS  Google Scholar 

  2. Kobayashi, S., & Yamaji, S. (2014). Analytical prediction of hydrolysis behavior of tricalcium phosphate/poly-L-lactic acid composites in simulated body environment. Advanced Composite Materials, 23(3), 211–223.

    Article  CAS  Google Scholar 

  3. Aunoble, S., Clément, D., Frayssinet, P., Harmand, M. F., & Le Huec, J. C. (2006). Biological performance of a new \(\beta \)-TCP/PLLA composite material for applications in spine surgery: In vitro and in vivo studies. Journal of Biomedical Materials Research Part A, 78(2), 416–422.

    Article  CAS  Google Scholar 

  4. Adamus, A., et al. (2012). In vitro degradation of \(\beta \)-tricalcium phosphate reinforced poly (L-lactic acid). In Materials science forum (Vol. 714, pp. 283–290). Trans Tech Publications

    Google Scholar 

  5. Kang, Y., Xu, X., Yin, G., Chen, A., Liao, L., & Yao, Y., et al. (2007). A comparative study of the in vitro degradation of poly(L-lactic acid)/\(\beta \)-tricalcium phosphate scaffold in static and dynamic simulated body fluid. European Polymer Journal, 43(5), 1768–1778.

    Google Scholar 

  6. Kang, Y., Yao, Y., Yin, G., Huang, Z., Liao, X., Xu, X., et al. (2009). A study on the in vitro degradation properties of poly(L-lactic acid)/\(\beta \)-tricalcuim phosphate (PLLA/\(\beta \)-TCP) scaffold under dynamic loading. Medical Engineering & Physics, 31(5), 589–594.

    Article  Google Scholar 

  7. Daculsi, G., Goyenvalle, E., Cognet, R., Aguado, E., & Suokas, E. O. (2011). Osteoconductive properties of poly(96L/4D-lactide)/beta-tricalcium phosphate in long term animal model. Biomaterials, 32(12), 3166–3177.

    Article  CAS  Google Scholar 

  8. Niemelä, T. (2005). Effect of \(\beta \)-tricalcium phosphate addition on the in vitro degradation of self-reinforced poly-L,D-lactide. Polymer Degradation and Stability, 89(3), 492–500.

    Article  CAS  Google Scholar 

  9. Zheng, X., Zhou, S., Yu, X., Li, X., Feng, B., Qu, S., et al. (2008). Effect of in vitro degradation of poly(D, L-lactide)/\(\beta \)-tricalcium composite on its shape-memory properties. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(1), 170–180.

    Article  CAS  Google Scholar 

  10. Lin, F.-H., Chen, T.-M., Lin, C.-P., & Lee, C.-J. (1999). The merit of sintered PDLLA/TCP composites in management of bone fracture internal fixation. Artificial Organs, 23(2), 186–194.

    Article  CAS  Google Scholar 

  11. Heidemann, W., Jeschkeit, S., Ruffieux, K., Fischer, J. H., Wagner, M., Krüger, G., et al. (2001). Degradation of poly(D, L)lactide implants with or without addition of calciumphosphates in vivo. Biomaterials, 22(17), 2371–2381.

    Article  CAS  Google Scholar 

  12. Niemelä, T., Kellomäki, M., & Törmälä, P. (2004). In vitro degradation of osteoconductivepoly-L/DL-lactide/\(\beta \)-TCP composites. In Key engineering materials (Vol. 254, pp. 509–512). Trans Tech Publication

    Google Scholar 

  13. Ignatius, A. A., Wolf, S., Augat, P., & Claes, L. E. (2001b). Composites made of rapidly resorbable ceramics and poly(lactide) show adequate mechanical properties for use as bone substitute materials. Journal of Biomedical Materials Research Part A, 57(1), 126–131.

    Article  CAS  Google Scholar 

  14. Ignatius, A. A., Augat, P., & Claes, L. E. (2001a). Degradation behavior of composite pins made of tricalcium phosphate and poly(L, DL-lactide). Journal of Biomaterials Science, Polymer Edition, 12(2), 185–194.

    Article  CAS  Google Scholar 

  15. Haaparanta, A.-M., Haimi, S., Ellä, V., Hopper, N., Miettinen, S., Suuronen, R., et al. (2010). Porous polylactide/\(\beta \)-tricalcium phosphate composite scaffolds for tissue engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 4(5), 366–373.

    Article  CAS  Google Scholar 

  16. Ahola, N., Männistö, N., Veiranto, M., Karp, M., Rich, J., Efimov, A., et al. (2013). An in vitro study of composites of poly(L-lactide-co-\(\varepsilon \)-caprolactone), \(\beta \)-tricalcium phosphate and ciprofloxacin intended for local treatment of osteomyelitis. Biomatter, 3(2), e23162.

    Article  Google Scholar 

  17. Ahola, N., Veiranto, M., Rich, J., Efimov, A., Hannula, M., Seppälä, J., et al. (2012). Hydrolytic degradation of composites of poly(L-lactide-co-\(\varepsilon \)-caprolactone)70/30 and \(\beta \)-tricalcium phosphate. Journal of Biomaterials Applications, 28(4), 529–543.

    Article  CAS  Google Scholar 

  18. Kikuchi, M., Koyama, Y., Yamada, T., Imamura, Y., Okada, T., Shirahama, N., et al. (2004). Development of guided bone regeneration membrane composed of \(\beta \)-tricalcium phosphate and poly(L-lactide-co-glycolide-co-\(\varepsilon \)-caprolactone) composites. Biomaterials, 25(28), 5979–5986.

    Article  CAS  Google Scholar 

  19. Yang, F., Cui, W., Xiong, Z., Liu, L., Bei, J., & Wang, S. (2006). Poly(L, L-lactide-co-glycolide)/tricalcium phosphate composite scaffold and its various changes during degradation in vitro. Polymer Degradation and Stability, 91(12), 3065–3073.

    Article  CAS  Google Scholar 

  20. Yang, Y., Zhao, Y., Tang, G., Li, H., Yuan, X., & Fan, Y. (2008). In vitro degradation of porous poly(L-lactide-co-glycolide)/\(\beta \)-tricalcium phosphate (PLGA/\(\beta \)-TCP) scaffolds under dynamic and static conditions. Polymer Degradation and Stability, 93(10), 1838–1845.

    Article  CAS  Google Scholar 

  21. Jin, H.-H., Min, S.-H., Song, Y.-K., Park, H.-C., & Yoon, S.-Y. (2010). Degradation behavior of poly(lactide-co-glycolide)/\(\beta \)-TCP composites prepared using microwave energy. Polymer Degradation and Stability, 95(9), 1856–1861.

    Article  CAS  Google Scholar 

  22. Ara, M., Watanabe, M., & Imai, Y. (2002). Effect of blending calcium compounds on hydrolytic degradation of poly(DL-lactic acid-co-glycolic acid). Biomaterials, 23(12), 2479–2483.

    Article  CAS  Google Scholar 

  23. Bennett, S. M. (2012). Degradation mechanisms of PLGA/ \(\alpha \)-TCP composites for orthopaedic applications. Ph.D. thesis, Department of Materials Science and Metallurgy, University of Cambridge.

    Google Scholar 

  24. Ege, D., Best, S., & Cameron, R. (2014). The degradation behaviour of nanoscale HA/PLGA and \(\alpha \)-TCP/PLGA composites. Bioinspired, Biomimetic and Nanobiomaterials, 3, BBN2.

    Article  CAS  Google Scholar 

  25. Ege, D. (2012). Mechanical and degradation properties of calcium phosphate/biodegradable polymer composites. Ph.D. thesis, Department of Materials Science and Metallurgy, University of Cambridge.

    Google Scholar 

  26. Yang, Z., Best, S. M., & Cameron, R. E. (2009). The influence of \(\alpha \)-tricalcium phosphate nanoparticles and microparticles on the degradation of poly(D, L-lactide-co-glycolide). Advanced Materials, 21(38–39), 3900–3904.

    Article  CAS  Google Scholar 

  27. Yang, Z. (2009). Development and characterisation of bioactive, bioresorbable\(\alpha \)-tricalcium phosphate/poly(D,L-lactide-co-glycolide) nanocomposites for bone substitution and fixation. Ph.D. thesis, Department of Materials Science and Metallurgy, University of Cambridge.

    Google Scholar 

  28. Mellon, V. (2003). Degradation study of poly(lactide-co-glycolic) acid and alpha or beta tricalcium phosphate composites - non porous. Unpublished research at University of Cambridge.

    Google Scholar 

  29. Barrett, C. E., & Cameron, R. E. (2014). X-ray microtomographic analysis of \(\alpha \)-tricalcium phosphate-poly(lactic-co-glycolic) acid nanocomposite degradation. Polymer, 55(16), 4041–4049.

    Article  CAS  Google Scholar 

  30. Barrett, C. E. (2013). The degradation behaviour of tricalcium phosphate - poly(lactide-co-glycolide) nanocomposites. Ph.D. thesis, Department of Materials Science and Metallurgy, University of Cambridge.

    Google Scholar 

  31. Ehrenfried, L. M., Patel, M. H., & Cameron, R. E. (2008). The effect of tri-calcium phosphate (TCP) addition on the degradation of polylactide-co-glycolide (PLGA). Journal of Materials Science: Materials in Medicine, 19(1), 459–466.

    CAS  Google Scholar 

  32. Imai, Y., Fukuzawa, A., & Watanabe, M. (1999a). Effect of blending tricalcium phosphate on hydrolytic degradation of a block polyester containing poly(L-lactic acid) segment. Journal of Biomaterials Science, Polymer Edition, 10(7), 773–786.

    Article  CAS  Google Scholar 

  33. Kikuchi, M., Koyama, Y., Takakuda, K., Miyairi, H., Shirahama, N., & Tanaka, J. (2002). In vitro change in mechanical strength of \(\beta \)-tricalcium phosphate/copolymerized poly-L-lactide composites and their application for guided bone regeneration. Journal of Biomedical Materials Research, 62(2), 265–272.

    Article  CAS  Google Scholar 

  34. Imai, Y., Nagai, M., & Watanabe, M. (1999b). Degradation of composite materials composed of tricalcium phosphate and a new type of block polyester containing a poly(L-lactic acid) segment. Journal of Biomaterials Science, Polymer Edition, 10(4), 421–432.

    Article  CAS  Google Scholar 

  35. Elliott, J. C. (2013). Structure and chemistry of the apatites and other calcium orthophosphates (Vol. 18). Elsevier.

    Google Scholar 

  36. Bates, R. G. (1951). First dissociation constant of phosphoric acid from 0\(^\circ \) to 60\(^\circ \)C: limitations of the electromotive force method for moderately strong acids. Journal of Research of the National Bureau of Standards, 47, 127–134.

    Article  CAS  Google Scholar 

  37. Bates, R. G., & Acree, S. (1943). pH values of certain phosphate-chloride mixtures, and the second dissociation constant of phosphoric acid from 0\(^\circ \) to 60\(^\circ \)C. Journal of Research of the National Bureau of Standards, 30, 129–155.

    Article  CAS  Google Scholar 

  38. Vanderzee, C. E., & Quist, A. S. (1961). The third dissociation constant of orthophosphoric acid. The Journal of Physical Chemistry, 65(1), 118–123.

    Article  CAS  Google Scholar 

  39. PubChem (2005c). CID: 24456. Retrieved September 1, 2016 from https://pubchem.ncbi.nlm.nih.gov/compound/Calcium_phosphate#section=Top.

  40. Dorozhkin, S. V., & Epple, M. (2002). Biological and medical significance of calcium phosphates. Angewandte Chemie International Edition, 41(17), 3130–3146.

    Article  CAS  Google Scholar 

  41. Neuendorf, R., Saiz, E., Tomsia, A., & Ritchie, R. (2008). Adhesion between biodegradable polymers and hydroxyapatite: Relevance to synthetic bone-like materials and tissue engineering scaffolds. Acta Biomaterialia, 4(5), 1288–1296.

    Article  CAS  Google Scholar 

  42. Middleton, J. C., & Tipton, A. J. (2000). Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21(23), 2335–2346.

    Article  CAS  Google Scholar 

  43. Bryar, S. (2015). Experimental study of the dissolution rate of\(\beta \)-tricalcium phosphate for use in biodegradable composites for orthopaedic applications. Part III individual research project: Department of Materials Science and Metallurgy, University of Cambridge.

    Google Scholar 

  44. Bohner, M. (2000). Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury, 31, D37–D47.

    Article  Google Scholar 

  45. Daculsi, G., LeGeros, R., LeGeros, J., & Mitre, D. (1991). Lattice defects in calcium phosphate ceramics: high resolution TEM ultrastructural study. Journal of Applied Biomaterials, 2(3), 147–152.

    Article  Google Scholar 

  46. LeGeros, R. Z. (1993). Biodegradation and bioresorption of calcium phosphate ceramics. Clinical Materials, 14(1), 65–88.

    Article  CAS  Google Scholar 

  47. Bohner, M., Lemaître, J., & Ring, T. A. (1997). Kinetics of dissolution of \(\beta \)-tricalcium phosphate. Journal of Colloid and Interface Science, 190(1), 37–48.

    Article  CAS  Google Scholar 

  48. Brazda, L., Rohanova, D., & Helebrant, A. (2008). Kinetics of dissolution of calcium phosphate (Ca-P) bioceramics. Processing and Application of Ceramics, 2(1), 57–62.

    Article  CAS  Google Scholar 

  49. Kirkwood, T. B. (1979). Geometric means and measures of dispersion. Biometrics, 35, 908–909.

    Google Scholar 

  50. Limpert, E., Stahel, W. A., & Abbt, M. (2001). Log-normal distributions across the sciences: Keys and clues: On the charms of statistics, and how mechanical models resembling gambling machines offer a link to a handy way to characterize log-normal distributions, which can provide deeper insight into variability and probability-normal or log-normal: That is the question. AIBS Bulletin, 51(5), 341–352.

    Google Scholar 

  51. Lam, C. X., Hutmacher, D. W., Schantz, J.-T., Woodruff, M. A., & Teoh, S. H. (2009). Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. Journal of Biomedical Materials Research Part A, 90(3), 906–919.

    Article  CAS  Google Scholar 

  52. Li, S., Garreau, H., & Vert, M. (1990a). Structure-property relationships in the case of the degradation of massive poly(\(\alpha \)-hydroxy acids) in aqueous media. Part 1: poly(DL-lactic acid). Journal of Materials Science: Materials in Medicine, 1, 123–130.

    CAS  Google Scholar 

  53. Li, S., Garreau, H., & Vert, M. (1990b). Structure-property relationships in the case of the degradation of massive poly(\(\alpha \)-hydroxy acids) in aqueous media. Part 2: degradation of lactide-glycolide copolymers: PLA37.5GA25 and PLA75GA25. Journal of Materials Science: Materials in Medicine, 1(3), 131–139.

    CAS  Google Scholar 

  54. Li, S., Garreau, H., & Vert, M. (1990c). Structure-property relationships in the case of the degradation of massive poly(\(\alpha \)-hydroxy acids) in aqueous media: Part 3: Influence of the morphology of poly(L-lactic acid). Journal of Materials Science: Materials in Medicine, 1, 198–206.

    CAS  Google Scholar 

  55. Hurrell, S., & Cameron, R. E. (2001a). Polyglycolide: degradation and drug release. Part I: Changes in morphology during degradation. Journal of Materials Science: Materials in Medicine, 12(9), 811–816.

    Google Scholar 

  56. Hurrell, S., & Cameron, R. E. (2001b). Polyglycolide: degradation and drug release. Part II: Drug release. Journal of Materials Science: Materials in Medicine, 12(9), 817–820.

    CAS  Google Scholar 

  57. Pitt, C. G., Chasalow, F., Hibionada, Y., Klimas, D., & Schindler, A. (1981a). Aliphatic polyesters. I. The degradation of poly(\(varepsilon \)-caprolactone) in vivo. Journal of Applied Polymer Science, 26(11), 3779–3787.

    Article  CAS  Google Scholar 

  58. Pitt, G., Gratzl, M., Kimmel, G., Surles, J., & Sohindler, A. (1981b). Aliphatic polyesters II. The degradation of poly(DL-lactide), poly(\(\varepsilon \)-caprolactone), and their copolymers in vivo. Biomaterials, 2(4), 215–220.

    Article  CAS  Google Scholar 

  59. Grizzi, I., Garreau, H., Li, S., & Vert, M. (1995). Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence. Biomaterials, 16(4), 305–311.

    Article  CAS  Google Scholar 

  60. Fu, K., Pack, D. W., Klibanov, A. M., & Langer, R. (2000). Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharmaceutical Research, 17(1), 100–106.

    Article  CAS  Google Scholar 

  61. von Burkersroda, F., Schedl, L., & Göpferich, A. (2002). Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials, 23(21), 4221–4231.

    Article  Google Scholar 

  62. McDonald, P. F., Lyons, J. G., Geever, L. M., & Higginbotham, C. L. (2010). In vitro degradation and drug release from polymer blends based on poly(DL-lactide), poly(L-lactide-glycolide) and poly(\(\varepsilon \)-caprolactone). Journal of Materials Science, 45(5), 1284–1292.

    Article  CAS  Google Scholar 

  63. Vert, M., Li, S., & Garreau, H. (1991). More about the degradation of LA/GA-derived matrices in aqueous media. Journal of Controlled Release, 16(1–2), 15–26.

    Article  CAS  Google Scholar 

  64. Li, S., & Vert, M. (2002). Biodegradation of aliphatic polyesters. In Degradable polymers (pp. 71–131). Springer.

    Google Scholar 

  65. Alexis, F. (2005). Factors affecting the degradation and drug-release mechanism of poly(lactic acid) and poly[(lactic acid)-co-(glycolic acid)]. Polymer International, 54(1), 36–46.

    Article  CAS  Google Scholar 

  66. Armentano, I., Dottori, M., Fortunati, E., Mattioli, S., & Kenny, J. (2010). Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polymer Degradation and Stability, 95(11), 2126–2146.

    Article  CAS  Google Scholar 

  67. Rezwan, K., Chen, Q., Blaker, J., & Boccaccini, A. R. (2006). Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27(18), 3413–3431.

    Article  CAS  Google Scholar 

  68. Kwon, K.-A., Shepherd, J. H., Shepherd, D. V., Moreno-Gomez, I., & Best, S. M. (2016). Nanocomposites for bone repair. In E. San Thian, J. Huang & M. Aizawa, (Eds.), Nanobioceramics for Healthcare Applications, (Chap. 9, pp. 239–298). Singapore: World Scientific.

    Google Scholar 

  69. Speight, J. G., et al. (2005). Lange’s handbook of chemistry (Vol. 1). New York: McGraw-Hill.

    Google Scholar 

  70. Van de Velde, K., & Kiekens, P. (2002). Biopolymers: overview of several properties and consequences on their applications. Polymer Testing, 21(4), 433–442.

    Article  Google Scholar 

  71. Zhu, Y., Leong, M. F., Ong, W. F., Chan-Park, M. B., & Chian, K. S. (2007). Esophageal epithelium regeneration on fibronectin grafted poly(L-lactide-co-caprolactone)(PLLC) nanofiber scaffold. Biomaterials, 28(5), 861–868.

    Article  CAS  Google Scholar 

  72. Mikos, A. G., Sarakinos, G., Leite, S. M., Vacant, J. P., & Langer, R. (1993). Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials, 14(5), 323–330.

    Article  CAS  Google Scholar 

  73. Scientific Polymer, Inc. (2013). Polymer density data. Retrieved September 1, 2016 from http://scientificpolymer.com/density-of-polymers-by-density/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismael Moreno-Gomez .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moreno-Gomez, I. (2019). Degradation of Bioresorbable Composites: Tricalcium Phosphate Case Studies. In: A Phenomenological Mathematical Modelling Framework for the Degradation of Bioresorbable Composites. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-04990-4_4

Download citation

Publish with us

Policies and ethics