Skip to main content

Fully Fuzzy Linear Programming Model for the Berth Allocation Problem with Two Quays

  • Chapter
  • First Online:
Uncertainty Management with Fuzzy and Rough Sets

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 377))

Abstract

In this work, we study the berth allocation problem (BAP), considering the cases continuous and dynamic for two quays; also, we assume that the arrival time of vessels is imprecise, meaning that vessels can be late or early up to a allowed threshold. Triangular fuzzy numbers represent the imprecision of the arrivals. We present two models for this problem: The first model is a fuzzy MILP (Mixed Integer Lineal Programming) and allows us to obtain berthing plans with different degrees of precision; the second one is a model of Fully Fuzzy Linear Programming (FFLP) and allows us to obtain a fuzzy berthing plan adaptable to possible incidences in the vessel arrivals. The models proposed have been implemented in CPLEX and evaluated in a benchmark developed to this end. For both models, with a timeout of 60 min, CPLEX find the optimum solution for instances up to 10 vessels; for instances between 10 and 65 vessels it finds a non-optimum solution and for bigger instants no solution is founded. Finally we suggest the steps to be taken to implement the model for the FFLP BAP in a maritime terminal of containers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bierwirth, C., Meisel, F.: A survey of berth allocation and quay crane scheduling problems in container terminals. Eur. J. Oper. Res. 202(3), 615–627 (2010)

    Article  MathSciNet  Google Scholar 

  2. Bruggeling, M., Verbraeck, A., Honig, H.: Decision support for container terminal berth planning: integration and visualization of terminal information. In: Proceedings of Van de Vervoers logistieke Werkdagen (VLW2011), pp. 263–283. University Press, Zelzate (2011)

    Google Scholar 

  3. Das, S.K., Mandal, T., Edalatpanah, S.A.: A mathematical model for solving fully fuzzy linear programming problem with trapezoidal fuzzy numbers. Appl. Intell. 46(3), 509–519 (2017)

    Article  Google Scholar 

  4. Exposito-Izquiero, C., Lalla-Ruiz, E., Lamata, T., Melian-Batista, B., Moreno-Vega, J.: Fuzzy optimization models for seaside port logistics: berthing and quay crane scheduling. Computational Intelligence, pp. 323–343. Springer International Publishing, Cham (2016)

    Chapter  Google Scholar 

  5. Gutierrez, F., Vergara, E., Rodrguez, M., Barber, F.: Un modelo de optimización difuso para el problema de atraque de barcos. Investig. Oper. 38(2), 160–169 (2017)

    Google Scholar 

  6. Gutierrez, F., Lujan, E., Vergara, E., Asmat, R.: A fully fuzzy linear programming model to the berth allocation problem. Ann. Comput. Sci. Inf. Syst. 11, 453–458 (2017)

    Google Scholar 

  7. Frojan, P., Correcher, J., Alvarez-Valdez, R., Kouloris, G., Tamarit, J.: The continuous Berth Allocation Problem in a container terminal with multiple quays. Exp. Syst. Appl. 42(21), 7356–7366 (2015)

    Article  Google Scholar 

  8. Jimenez, M., Arenas, M., Bilbao, A., Rodríguez, M.V.: Linear programming with fuzzy parameters: an interactive method resolution. Eur. J. Oper. Res. 177(3), 1599–1609 (2007)

    Article  MathSciNet  Google Scholar 

  9. Kim, K., Moon, K.C.: Berth scheduling by simulated annealing. Transp. Res. Part B Methodol. 37(6), 541–560 (2003)

    Article  Google Scholar 

  10. Lalla-Ruiz, E., Melin-Batista, B., Moreno-Vega, J.: cooperative search for berth scheduling. Knowl. Eng. Rev. 31(5), 498–507 (2016)

    Article  Google Scholar 

  11. Laumanns, M., et al.: Robust adaptive resource allocation in container terminals. In: Proceedings of 25th Mini-EURO Conference Uncertainty and Robustness in Planning and Decision Making, Coimbra, Portugal, pp. 501–517 (2010)

    Google Scholar 

  12. Lim, A.: The berth planning problem. Oper. Res. Lett. 22(2), 105–110 (1998)

    Article  MathSciNet  Google Scholar 

  13. Luhandjula, M.K.: Fuzzy mathematical programming: theory, applications and extension. J. Uncertain Syst. 1(2), 124–136 (2007)

    Google Scholar 

  14. Nasseri, S.H., Behmanesh, E., Taleshian, F., Abdolalipoor, M., Taghi-Nezhad, N.A.: Fully fuzzy linear programming with inequality constraints. Int. J. Ind. Math. 5(4), 309–316 (2013)

    Google Scholar 

  15. Rodriguez-Molins, M., Ingolotti, L., Barber, F., Salido, M.A., Sierra, M.R., Puente, J.: A genetic algorithm for robust berth allocation and quay crane assignment. Prog. Artif. Intell. 2(4), 177–192 (2014)

    Article  Google Scholar 

  16. Rodriguez-Molins, M., Salido, M.A., Barber, F.: A GRASP-based metaheuristic for the Berth allocation problem and the quay crane assignment problem by managing vessel cargo holds. Appl. Intell. 40(2), 273–290 (2014)

    Article  Google Scholar 

  17. Steenken, D., Vo, S., Stahlbock, R.: Container terminal operation and operations research-a classification and literature review. OR Spectr. 26(1), 3–49 (2004)

    Article  Google Scholar 

  18. UNCTAD: Container port throughput, annual, 2010–2016. http://unctadstat.unctad.org/wds/TableViewer/tableView.aspx?ReportId=13321. Accessed 02 March 2018

  19. Wang, X., Kerre, E.: Reasonable properties for the ordering of fuzzy quantities (I). Fuzzy Sets Syst. 118(3), 375–385 (2001)

    Article  MathSciNet  Google Scholar 

  20. Yager, R.R.: A procedure for ordering fuzzy subsets of the unit interval. Inf. Sci. 24(2), 143–161 (1981)

    Article  MathSciNet  Google Scholar 

  21. Young-Jou, L., Hwang, C.: Fuzzy Mathematical Programming: Methods and Applications, vol. 394. Springer Science & Business Media, Berlin (2012)

    MATH  Google Scholar 

  22. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 100, 9–34 (1999)

    Article  Google Scholar 

  23. Zhen, L., Lee, L.H., Chew, E.P.: A decision model for berth allocation under uncertainty. Eur. J. Oper. Res. 212(3), 54–68 (2011)

    Article  Google Scholar 

  24. Zimmermann, H.: Fuzzy Set Theory and its Applications, Fourth Revised edn. Springer, Dordrecht (2001)

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by INNOVATE-PERU, Project N PIBA-2-P-069-14.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Flabio Gutierrez , Edwar Lujan , Rafael Asmat or Edmundo Vergara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gutierrez, F., Lujan, E., Asmat, R., Vergara, E. (2019). Fully Fuzzy Linear Programming Model for the Berth Allocation Problem with Two Quays. In: Bello, R., Falcon, R., Verdegay, J. (eds) Uncertainty Management with Fuzzy and Rough Sets. Studies in Fuzziness and Soft Computing, vol 377. Springer, Cham. https://doi.org/10.1007/978-3-030-10463-4_5

Download citation

Publish with us

Policies and ethics