Skip to main content

Radiogenic Heat Production of Rocks

  • Living reference work entry
  • First Online:
Encyclopedia of Solid Earth Geophysics

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

Radiogenic heat generation rate

Definition

Radiogenic heat production:

Physical property defining the amount of heat liberated in unit time in a unit volume of rock by the decay of unstable radiogenic isotopes; dimension: W m−3.

Geoneutrino:

An electron antineutrino emitted in β-decay of nuclei during radiogenic heat production caused by the decay of the unstable isotopes 238U, 232Th, and 40K.

eV (electron Volt):

A non-SI unit of energy in nuclear physics, defined as the kinetic energy gained by an electron of elementary charge when accelerating through an electric potential difference of 1 V. Thus, one electron Volt equals one Volt, which is one Joule per Coulomb, multiplied by the electron charge of e = 1.602176487(40) × 10−19 C. Therefore, 1 eV = 1.602176487 × 10−19 J.

ppm (parts per million):

A non-SI unit of relative frequency (or abundance) in 10−6, similar to % (percent) or ‰ (per mil) in 10−2 and 10−3, respectively.

...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Adams JS, Gasparini P (1970) Gamma-ray spectrometry of rocks. Elsevier, Amsterdam

    Google Scholar 

  • Adams JAS, Weaver CE (1958) Thorium to uranium ratios as indicators of sedimentary processes: examples of the concept of geochemical facies. Bull Am Assoc Pet Geol 42:387–430

    Google Scholar 

  • Araki T et al (2005) Experimental investigation of geologically produced antineutrinos with KamLAND. Nature 436:499–503

    Article  Google Scholar 

  • Bahcall JN (1969) Neutrinos from the Sun. Sci Am 221(1):28–37

    Article  Google Scholar 

  • Beardsmore GR, Cull JP (2001) Crustal heat flow. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Birch F (1954) Heat from radioactivity. In: Faul H (ed) Nuclear geology. Wiley, New York, pp 148–174

    Google Scholar 

  • Bücker C, Rybach L (1996) A simple method to determine heat production from gamma-ray logs. Mar Pet Geol 13:373–375

    Article  Google Scholar 

  • Canup RM, Asphaug E (2001) Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412:708–712

    Article  Google Scholar 

  • Canup RM, Righter K (eds) (2000) Origin of the Earth and Moon. University of Arizona Press, Tucson

    Google Scholar 

  • ÄŒermák V, Rybach L (1982) Radioactive heat generation in rocks. In: Angenheister G (ed) Landolt-Börnstein, Group V: geophysics and space research. Physical properties of rocks, Subvol. A, vol l. Springer, Heidelberg/Berlin, pp 353–371

    Google Scholar 

  • Clauser C (2009) Heat transport processes in the Earth’s crust. Surv Geophys 30:163–191. https://doi.org/10.1007/s10712-009-9058-2

    Article  Google Scholar 

  • De Meijer RJ, Smit FD, Brooks FD, Fearick RW, Wörtche HJ, Mantovani F (2006) Towards Earth AntineutRino TomograpHy (EARTH). Earth Moon Planet 99(1–4):193–206

    Article  Google Scholar 

  • Emsley J (1989) The elements. Clarendon, Oxford

    Google Scholar 

  • Fiorentini G, Mantovani F, Ricci B (2003) Neutrinos and energetics of the Earth. Phys Lett B 557:139–146

    Article  Google Scholar 

  • Fiorentini G, Lissia M, Mantovani F, Vanucci R (2005) Geo-neutrinos: a new probe of Earth’s interior. Earth Planet Sci Lett B 557:139–146

    Google Scholar 

  • Hamza VM, Beck AE (1972) Terrestrial heat flow, the neutrino problem, and a possible energy source in the core. Nature 240(5380):343–344

    Article  Google Scholar 

  • IEA (2008) World energy outlook 2008. International Energy Agency (IEA), Paris. http://www.iea.org/textbase/nppdf/free/2008/weo2008.pdf. Retrieved 10 July 2010

    Google Scholar 

  • IEA (2020) Data and statistics. International Energy Agency (IEA), Paris. https://www.iea.org/data-and-statistics/data-tables?country=WORLD&energy=Balances&year=2017. Retrieved 17 Mar 2020

    Google Scholar 

  • Jaupart C, Labrosse S, Mareschal J-C (2007) Temperatures, heat and energy in the mantle of the Earth. In: Bercovici D (ed) Mantle dynamics – treatise on geophysics, vol 7. Elsevier, Amsterdam, pp 253–303

    Chapter  Google Scholar 

  • Jessop AM (1990) Thermal geophysics. Elsevier, Amsterdam

    Google Scholar 

  • Kamland Collaboration (2011) Partial radiogenic heat model for Earth revealed by geoneutrino measurements. Nat Geosci 4(9):647–651

    Article  Google Scholar 

  • McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Melosh HJ (1990) Giant impacts and the thermal state of the early Earth. In: Newsom HE, Jones JH (eds) Origin of the Earth. Oxford University Press, New York, pp 69–83

    Google Scholar 

  • Rybach L (1988) Determination of heat production rate. In: Hänel R, Rybach L, Stegena L (eds) Handbook of terrestrial heat flow density determination. Kluwer, Dordrecht, pp 125–142

    Google Scholar 

  • Stacey FD, Davis PM (2008) Physics of the Earth, 4th edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Vacquier V (1991) The origin of terrestrial heat flow. Geophys J Int 106(1):199–202

    Article  Google Scholar 

  • Vacquier V (1992) Corrigendum to ‘the origin of terrestrial heat flow/prime. Geophys J Int 111(3):637–638

    Article  Google Scholar 

  • Van Schmus WR (1984) Radioactivity properties of minerals and rocks. In: Carmichael RS (ed) Handbook of physical properties of rocks, vol III. CRC Press, Boca Raton, pp 281–293

    Google Scholar 

  • Van Schmus WR (1995) Natural radioactivity in crust and mantle. In: Ahrens TJ (ed) Global Earth physics – a handbook of physical constants. AGU reference shelf, vol 1. American Geophysical Union, Washington, DC, pp 283–291

    Google Scholar 

  • Watt DE, Ramsden D (1964) High sensitivity counting techniques. Pergamon, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Clauser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Clauser, C. (2020). Radiogenic Heat Production of Rocks. In: Gupta, H. (eds) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-030-10475-7_74-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10475-7_74-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10475-7

  • Online ISBN: 978-3-030-10475-7

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics