Skip to main content

Phase Equilibria in Fractal Core-Shell Nanoparticles of the Pb5(VO4)3Cl–Pb5(PO4)3Cl System: The Influence of Size and Shape

  • Conference paper
  • First Online:
Advances in Artificial Systems for Medicine and Education II (AIMEE2018 2018)

Abstract

The investigation of phase equilibria in nanosystems has become one of the new trends in chemical thermodynamics. For binary alloys with limited mutual solubilities, a reduction of the system’s volume can be accompanied by significant changes of solubilities and the appearance of unusual metastable phases. To comprehend the structural characteristics and the thermodynamical stability of nanoalloys and to improve their performance, a knowledge of their phase equilibria, that considers their size and shape dependence, is critically needed. Due to the fact that experimental investigations are extremely challenging to perform at the nanoscale, useful predictions can be provided by nanothermodynamical simulations. In this paper, size- and shape-dependent phase equilibria in core-shell nanoparticles of the Pb5(VO4)3Cl–Pb5(PO4)3Cl stratifying solid solution are calculated. Those compounds are subjects of biochemistry and geochemistry, known as natural minerals vanadinite and pyromorphite. In a core-shell structure, two heterogeneous states are possible. At the nanoscale, one of them is metastable and the size- and shape-dependent properties of co-existing phases are different in each state. The shape of each phase is modeled by its shape coefficient which is equal to the ratio between surface areas of the phase and the sphere of the same volume. The thermodynamical stability of heterogeneous states depends on shape coefficients of both phases. The geometrical properties of core-shell-nanoparticles are also determined by using the fractal geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Magnin, Y., Zappelli, A., Amara, H., Ducastelle, F., Bichara, C.: Size dependent phase diagrams of nickel-carbon nanoparticles. Phys. Rev. Lett. 115(20), 205502–205506 (2015)

    Article  Google Scholar 

  2. Dahan, Y., Makov, G., Shneck, R.Z.: Nanometric size-dependent phase diagram of Bi-Sn. CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 53, 136–145 (2016)

    Article  Google Scholar 

  3. Park, J., Lee, J.: Phase diagram reassessment of Ag-Au system including size effect. CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 32(1), 135–141 (2008)

    Article  Google Scholar 

  4. Monji, F., Jabbareh, M.A.: Thermodynamic model for prediction of binary alloy nanoparticle phase diagram including size effect. CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 58, 1–5 (2017)

    Article  Google Scholar 

  5. Fedoseev, V.B., Shishulin, A.V., Titaeva, E.K., Fedoseeva, E.N.: On the possibility on the formation of NaCl-KCl solid-solution crystal from an aqueous solution at room temperature in small-volume systems. Phys. Solid State 58(10), 2095–2100 (2016)

    Article  Google Scholar 

  6. Shishulin, A.V., Fedoseev, V.B.: Size effect in the phase separation of Cr-W solid solutions. Inorg. Mater. 54(6), 546–549 (2018)

    Article  Google Scholar 

  7. Straumal, B., Baretzky, B., Mazilkin, A., Protasova, S., Myatiev, A., Straumal, P.: Increase of Mn solubility with decreasing grain size in ZnO. J. Eur. Ceram. Soc. 29(10), 1963–1970 (2009)

    Article  Google Scholar 

  8. Ghasemi, M., Zanolli, Z., Stankovski, M., Johansson, J.: Size- and shape-dependent phase diagram of In-Sb nano-alloys. Nanoscale 7, 17387–17396 (2015)

    Article  Google Scholar 

  9. Cui, M., Lu, H., Jiang, H., Cao, Z., Meng, X.: Phase diagram of continuous binary nanoalloys: size, shape and segregation effects. Sci. Rep. 7, 1–10 (2017)

    Article  Google Scholar 

  10. Guisbiers, G., Mendoza-Cruz, R., Bazán-Díaz, L., Velázquez-Salazar, J.J., Mendoza-Pérez, R., Robledo-Torres, J., et al.: Electrum, the gold–silver alloy, from the bulk scale to the nanoscale: synthesis, properties, and segregation rules. ASC Nano 10(1), 188–198 (2015)

    Article  Google Scholar 

  11. Guisbiers, G., Mendoza-Pérez, R., Bazán-Díaz, L., Mendoza-Cruz, R., Velázquez-Salazar, J.J., Yakamán, M.J.: Size and shape effects on the phase diagrams of nickel-based bimetallic nanoalloys. J. Phys. Chem. 121(12), 6930–6939 (2017)

    Google Scholar 

  12. Guisbiers, G., Khanal, S., Ruis-Zepeda, F., Roque de la Puente, J., Yakamán, M.J.: Cu-Ni nano-alloy: mixed, core-shell or janus nano-particle. Nanoscale 24(6), 14630–14635 (2014)

    Article  Google Scholar 

  13. Tovbin, YuK: Lower size boundary for the applicability of thermodynamics. Russ. J. Phys. Chem. A 86(9), 1356–1369 (2012)

    Article  Google Scholar 

  14. Fedoseev, V.B., Potapov, A.A., Shishulin, A.V., Fedoseeva, E.N.: Size and shape effect on the phase transitions in a small system with fractal interphase boundaries. Eurasian Phys. Tech. J 14(1), 18–24 (2017)

    Google Scholar 

  15. Shishulin, A.V., Fedoseev, V.B., Shishulina, A.V.: Environment-dependent phase equilibria in a small volume system in case of decomposition of Bi-Sb solid solutions. Butlerov Commun. 51(7), 31–37 (2017). (In Russian)

    Google Scholar 

  16. Gusev, A.I., Rempel, A.A.: Nanocrystalline Materials. Fizmatlit, Moscow (2000). (In Russian)

    Google Scholar 

  17. Gladkikh, N.T., Dukarov, S.V., Kryshtal, A.P., Larin, V.I., Sukhov, V.N., Bogatyrenko, S.I.: Surface Phenomena and Phase Transitions in Condensed Thin Films. V. N. Karazin Kharkiv National University, Kharkiv (2004). (In Russian)

    Google Scholar 

  18. Alymov, M.I., Shorshorov, MKh: The influence of size factors on the melting temperature and surface tension of ultra-disperse particles. Metally 2, 29–31 (1999). (In Russian)

    Google Scholar 

  19. Rusanov, A.I.: Phase Equilibria and Surface Phenomena. Khimiya, Leningrad (1967). (In Russian)

    Google Scholar 

  20. Gusarov, V.V.: The thermal effect of melting in polycrystalline systems. Thermochim. Acta 256(2), 467–472 (1995)

    Article  Google Scholar 

  21. Betkhtin, A.G.: The Course of Mineralogy. Gosudarstvennoye nauchno-tekhnicheskoye izdatel’stvo po geologii i okhrane nedr, Moscow (1956). (In Russian)

    Google Scholar 

  22. Chernorukov, N.G., Knyazev, A.V., Bulanov, E.N.: Isomorphism and phase diagram of the Pb5(VO4)3Cl–Pb5(PO4)3Cl system. Russ. J. Inorg. Chem. 55(9), 1463–1470 (2010)

    Article  Google Scholar 

  23. Hourlier, D., Perrot, P.: Au-Si and Au-Ge phase diagrams for nanosystems. Mater. Sci. Forum 653, 77–85 (2010)

    Article  Google Scholar 

  24. Rakovan, J.: Growth and surface properties of apatite. Rev. Mineral. Geochem. 48(1), 51–86 (2002)

    Article  Google Scholar 

  25. Lazarev, S.Y.: Assessment of substance properties by the criteria of surface energy, hardness and energy density. Metalloobrabotka 2, 38–42 (2003). (In Russian)

    Google Scholar 

  26. Kalinin, S.V., Gorbachev, D.L., Borisevich, A.Y., Tomashevitch, K.V., Vertegel, A.A., Markworth, A.J., et al.: Evolution of fractal particles in systems with conserved order parameter. Phys. Rev. E 61(2), 1189–1194 (2000)

    Article  Google Scholar 

  27. Katunin, A.: Construction of fractals based on catalan solids. Int. J. Math. Sci. Comput. (IJMSC) 3(4), 1–7 (2017). https://doi.org/10.5815/ijmsc.2017.04.01

    Article  MATH  Google Scholar 

  28. Nayak, S.R., Mishra, J.: On calculation of fractal dimension of color images. Int. J. Image Graph. Sig. Process. (IJIGSP) 9(3), 33–40 (2017). https://doi.org/10.5815/ijigsp.2017.03.04

    Article  Google Scholar 

  29. Khemis, K., Lazzouni, S.A., Messadi, M., Loudjedi, S., Bessaid, A.: New algorithm for fractal dimension estimation based on texture measurements: application on breast tissue characterization. Int. J. Image Graph. Sig. Process. (IJIGSP) 8(4), 9–15 (2016). https://doi.org/10.5815/ijigsp.2016.04.02

    Article  Google Scholar 

  30. Fedoseev, V.B., Shishulin, A.V.: Shape effect in layering of solid solutions in small volume: bismuth-antimony alloy. Phys. Solid State 60(7), 1398–1404 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the Russian Foundation for Basic Research (RFBR) (project № 18-08-01356). V. B. Fedoseev acknowledges the support from the Russian Science Foundation (project № 15-13-00137–p.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Shishulin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shishulin, A.V., Potapov, A.A., Fedoseev, V.B. (2020). Phase Equilibria in Fractal Core-Shell Nanoparticles of the Pb5(VO4)3Cl–Pb5(PO4)3Cl System: The Influence of Size and Shape. In: Hu, Z., Petoukhov, S., He, M. (eds) Advances in Artificial Systems for Medicine and Education II. AIMEE2018 2018. Advances in Intelligent Systems and Computing, vol 902. Springer, Cham. https://doi.org/10.1007/978-3-030-12082-5_37

Download citation

Publish with us

Policies and ethics