Skip to main content

Nanocellulose Composite Biomaterials in Industry and Medicine

  • Chapter
  • First Online:
Extracellular Sugar-Based Biopolymers Matrices

Part of the book series: Biologically-Inspired Systems ((BISY,volume 12))

Abstract

Cellulose, the most abundant polymer on earth, has merited a remarkable wave of attention, largely revolving around its nanocellulose derivative, a green, easily extractable, high-performance nanomaterial. Its widespread availability, high abundance, renewable nature, biocompatibility, low toxicity, unique structure, and easily tailorable mechanical and physical properties render it an attractive reagent in various sectors. While free of biological activity, nanocellulose presents a versatile platform for fabrication of composite, clinically relevant materials with healing and regeneration capacities. Similarly, its tunable characteristics enable design of smart drug delivery systems and biomimetics. It has also proven a transformative agent in the food packaging and 3D printing industries. The vast potential of nanocellulose continues to emerge and promises to bring to further exciting and novel applications. This chapter provides an overview of the various sources, production, and processing methods of nanocellulose, as well as the chemical modifications used to modify its properties and functions. In addition, its vast applications in the worlds of printing, wound healing, pharmaceutics, and tissue engineering are extensively reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben-Shalom T, Lapidot S, Shoseyov O (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol 39:76–88

    Article  CAS  PubMed  Google Scholar 

  • Abitbol T, Kam D, Levi-Kalisman Y, Gray DG, Shoseyov O (2018) Surface charge influence on the phase separation and viscosity of cellulose nanocrystals. Langmuir. https://doi.org/10.1021/acs.langmuir.7b04127

    Article  CAS  PubMed  Google Scholar 

  • Abo-elseoud WS, Hassan ML, Sabaa MW, Basha M, Hassan EA, Fadel SM (2018) Chitosan nanoparticles/cellulose nanocrystals nanocomposites as a carrier system for the controlled release of repaglinide. Int J Biol Macromol 111:604–613

    Article  CAS  PubMed  Google Scholar 

  • Abraham E, Kam D, Nevo Y, Slattegard R, Rivkin A, Lapidot S, Shoseyov O (2016a) Highly modified cellulose nanocrystals and formation of Epoxy-Nanocrystalline Cellulose (CNC) nanocomposites. ACS Appl Mater Interfaces 8:28086–28095

    Article  CAS  PubMed  Google Scholar 

  • Abraham E, Nevo Y, Slattegard R, Attias N, Sharon S, Lapidot S, Shoseyov O (2016b) Highly hydrophobic thermally stable liquid crystalline cellulosic nanomaterials. ACS Sustain Chem Eng 4:1338–1346

    Article  CAS  Google Scholar 

  • Abraham E, Weber DE, Sharon S, Lapidot S, Shoseyov O (2017) Multifunctional cellulosic scaffolds from modified cellulose nanocrystals. ACS Appl Mater Interfaces 9:2010–2015

    Article  CAS  PubMed  Google Scholar 

  • Åhlén M, Tummala GK, Mihranyan A (2018) Nanoparticle-loaded hydrogels as a pathway for enzyme-triggered drug release in ophthalmic applications. Int J Pharm 536:73–81

    Article  PubMed  CAS  Google Scholar 

  • Ahmad N, Mohd Amin MCI, Mahali SM, Ismail I, Giam Chuang VT (2014) Biocompatible and mucoadhesive bacterial cellulose-g-poly(acrylic acid) hydrogels for oral protein delivery. Mol Pharm 11:4130–4142

    Article  CAS  PubMed  Google Scholar 

  • Ahrem H, Pretzel D, Endres M, Conrad D, Courseau J, Müller H, Jaeger R, Kaps C, Klemm DO, Kinne RW (2014) Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants. Acta Biomater 10:1341–1353

    Article  CAS  PubMed  Google Scholar 

  • Aitomäki Y, Oksman K (2014) Reinforcing efficiency of nanocellulose in polymers. React Funct Polym 85:151–156

    Article  CAS  Google Scholar 

  • Akaraonye E, Filip J, Safarikova M, Salih V, Keshavarz T, Knowles JC, Roy I (2016) Composite scaffolds for cartilage tissue engineering based on natural polymers of bacterial origin, thermoplastic poly(3-hydroxybutyrate) and micro-fibrillated bacterial cellulose. Polym Int 65:780–791

    Article  CAS  Google Scholar 

  • Akhlaghi SP, Berry RC, Tam KC (2013) Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications. Cellulose 20:1747–1764

    Article  CAS  Google Scholar 

  • Akhlaghi SP, Tiong D, Berry RM, Tam KC (2014) Comparative release studies of two cationic model drugs from different cellulose nanocrystal derivatives. Eur J Pharm Biopharm 88:207–215

    Article  CAS  PubMed  Google Scholar 

  • Alizadeh N, Akbari V, Nurani M, Taheri A (2018) Preparation of an injectable doxorubicin surface modified cellulose nanofiber gel and evaluation of its anti-tumor and anti-metastasis activity in melanoma. Biotechnol Prog 34:537–545

    Article  CAS  PubMed  Google Scholar 

  • Alkhatib Y, Dewaldt M, Moritz S, Nitzsche R, Kralisch D, Fischer D (2017) Controlled extended octenidine release from a bacterial nanocellulose/Poloxamer hybrid system. Eur J Pharm Biopharm 112:164–176

    Article  CAS  PubMed  Google Scholar 

  • An SJ, Lee SH, Huh JB, Jeong SI, Park JS, Gwon HJ, Kang ES, Jeong CM, Lim YM (2017) Preparation and characterization of resorbable bacterial cellulose membranes treated by electron beam irradiation for guided bone regeneration. Int J Mol Sci 18:2236

    Article  PubMed Central  CAS  Google Scholar 

  • Andersson J, Stenhamre H, Bäckdahl H, Gatenholm P (2010) Behavior of human chondrocytes in engineered porous bacterial cellulose scaffolds. J Biomed Mater Res Part A 94A:1124–1132

    CAS  Google Scholar 

  • Andrade FK, Moreira SMG, Domingues L, Gama FMP (2009) Improving the affinity of fibroblasts for bacterial cellulose using carbohydrate-binding modules fused to RGD. J Biomed Mater Res Part A 92:9–17

    Google Scholar 

  • Andrade FK, Costa R, Domingues L, Soares R, Gama M (2010) Improving bacterial cellulose for blood vessel replacement: functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide. Acta Biomater 6:4034–4041

    Article  CAS  PubMed  Google Scholar 

  • Andrade FK, Silva JP, Carvalho M, Castanheira EMS, Soares R, Gama M (2011) Studies on the hemocompatibility of bacterial cellulose. J Biomed Mater Res Part A 98(A):554–566

    Article  CAS  Google Scholar 

  • Angelova N, Hunkeler D (1999) Rationalizing the design of polymeric biomaterials. Trends Biotechnol 17:409–421

    Article  CAS  PubMed  Google Scholar 

  • Anirudhan TS, Rejeena SR (2014) Poly(acrylic acid-co-acrylamide-co-2-acrylamido-2-methyl-1- propanesulfonic acid)-grafted nanocellulose/poly(vinyl alcohol) composite for the in vitro gastrointestinal release of amoxicillin. Appl Polym 131:40699

    Google Scholar 

  • Anirudhan TS, Nair SS, Chithra Sekhar V (2017) Deposition of gold-cellulose hybrid nanofiller on a polyelectrolyte membrane constructed using guar gum and poly(vinyl alcohol) for transdermal drug delivery. J Membr Sci 539:344–357

    Article  CAS  Google Scholar 

  • Ansell MP (2015) Wood composites. Elsevier Ltd, New York City

    Google Scholar 

  • Araki J, Wada M, Kuga S, Okano T (1999) Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J Wood Sci 45:258–261

    Article  CAS  Google Scholar 

  • Araújo IMS, Silva RR, Pacheco G, Lustri WR, Tercjak A, Gutierrez J, Júnior JRS, Azevedo FHC, Figuêredo GS, Vega ML, Ribeiro SJL, Barud HS (2018) Hydrothermal synthesis of bacterial cellulose–copper oxide nanocomposites and evaluation of their antimicrobial activity. Carbohydr Polym 179:341–349

    Article  PubMed  CAS  Google Scholar 

  • Ataide JA, De Carvalho NM, Rebelo MDA, Chaud MV, Grotto D, Gerenutti M, Rai M, Mazzola PG, Jozala AF (2017) Bacterial nanocellulose loaded with bromelain: assessment of antimicrobial, antioxidant and physical-chemical properties. Sci Rep 7:18031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bäckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:2141–2149

    Article  PubMed  CAS  Google Scholar 

  • Backdahl H, Esguerra M, Delbro D, Risberg B, Gatenholm P (2008) Engineering microporosity in bacterial cellulose scaffolds. J Tissue Eng Regen Med 2:320–330

    Article  PubMed  CAS  Google Scholar 

  • Badshah M, Ullah H, Khan SA, Joong K, Park JK, Khan T (2017) Preparation, characterization and in-vitro evaluation of bacterial cellulose matrices for oral drug delivery. Cellulose 24:5041–5052

    Article  CAS  Google Scholar 

  • Badshah M, Ullah H, Khan AR, Khan S, Park JK, Khan T (2018) Surface modification and evaluation of bacterial cellulose for drug delivery. Int J Biol Macromol 113:526–533

    Article  CAS  PubMed  Google Scholar 

  • Bajpai SK, Ahuja S, Chand N, Bajpai M (2017) Nano cellulose dispersed chitosan film with Ag NPs/Curcumin: an in vivo study on Albino Rats for wound dressing. Int J Biol Macromol 104:1012–1019

    Article  CAS  PubMed  Google Scholar 

  • Barua S, Das G, Aidew L, Buragohain AK, Karak N (2013) Copper–copper oxide coated nanofibrillar cellulose: a promising biomaterial. RSC Adv 3:14997–15004

    Article  CAS  Google Scholar 

  • Barud HDS, de Araújo Júnior AM, Saska S, Mestieri LB, Campos JADB, de Freitas RM, Ferreira NU, Nascimento AP, Miguel FG, Vaz MMDOLL, Barizon EA, Marquele-Oliveira F, Gaspar AMM, Ribeiro SJL, Berretta AA (2013) Antimicrobial Brazilian propolis (EPP-AF) eontaining biocellulose membranes as promising biomaterial for skin wound healing. Evid Based Complement Alternat Med 2013:1–10

    Article  Google Scholar 

  • Basmaji P, De Olyveira GM, Marcio Luiz dos S, Guastaldi AC (2014) Novel antimicrobial peptides bacterial cellulose obtained by symbioses culture between polyhexanide biguanide (PHMB) and green tea. J Biomater Tissue Eng 4:59–64

    Article  CAS  Google Scholar 

  • Basnett P, Knowles JC, Pishbin F, Smith C, Keshavarz T, Boccaccini AR, Roy I (2012) Novel biodegradable and biocompatible poly(3-hydroxyoctanoate)/bacterial cellulose composites. Adv Eng Mater 14:330–343

    Article  CAS  Google Scholar 

  • Basu A, Lindh J, Ålander E, Strømme M, Ferraz N (2017) On the use of ion-crosslinked nanocellulose hydrogels for wound healing solutions: physicochemical properties and application-oriented biocompatibility studies. Carbohydr Polym 174:299–308

    Article  CAS  PubMed  Google Scholar 

  • Basu A, Heitz K, Strømme M, Welch K, Ferraz N (2018) Ion-crosslinked wood-derived nanocellulose hydrogels with tunable antibacterial properties: candidate materials for advanced wound care applications. Carbohydr Polym 181:345–350

    Article  CAS  PubMed  Google Scholar 

  • Bayer J, Granda LA, Méndez JA, Pèlach MA, Vilaseca F, Mutjé P (2016) Cellulose polymer composites (WPC). In: Advanced high strength natural fibre composites in construction. Elsevier Science, Kent, pp 115–139

    Google Scholar 

  • Bhandari J, Mishra H, Mishra PK, Wimmer R, Ahmad FJ, Talegaonkar S (2017) Cellulose nanofiber aerogel as a promising biomaterial for customized oral drug delivery. Int J Nanomedicine 12:2021–2031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya M, Malinen MM, Lauren P, Lou YR, Kuisma SW, Kanninen L, Lille M, Corlu A, Guguen-Guillouzo C, Ikkala O, Laukkanen A, Urtti A, Yliperttula M (2012) Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J Control Release 164:291–298

    Article  CAS  PubMed  Google Scholar 

  • Bodhibukkana C, Srichana T, Kaewnopparat S, Tangthong N, Bouking P, Martin GP, Suedee R (2006) Composite membrane of bacterially-derived cellulose and molecularly imprinted polymer for use as a transdermal enantioselective controlled-release system of racemic propranolol. J Control Release 113:43–56

    Article  CAS  PubMed  Google Scholar 

  • Bodin A, Ahrenstedt L, Fink H, Brumer H, Risberg B, Gatenholm P (2007a) Modification of nanocellulose with a xyloglucan – RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineering. Biomacromolecules 8:3697–3704

    Article  CAS  PubMed  Google Scholar 

  • Bodin A, Backdahl H, Fink H, Gustafsson L, Risberg B, Gatenholm P (2007b) Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes. Biotechnol Bioeng 97:425–434

    Article  CAS  PubMed  Google Scholar 

  • Bodin A, Concaro S, Brittberg M, Gatenholm P (2007c) Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regen Med 1:406–408

    Article  CAS  PubMed  Google Scholar 

  • Bodin A, Bharadwaj S, Wu S, Gatenholm P, Atala A, Zhang Y (2010) Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. Biomaterials 31:8889–8901

    Article  CAS  PubMed  Google Scholar 

  • Booij JC, Baas DC, Beisekeeva J, Gorgels TGMF, Bergen AAB (2010) The dynamic nature of Bruch’s membrane. Prog Retin Eye Res 29:1–18

    Article  CAS  PubMed  Google Scholar 

  • Borges AC, Eyholzer C, Duc F, Bourban PE, Tingaut P, Zimmermann T, Pioletti DP, Månson JAE (2011) Nanofibrillated cellulose composite hydrogel for the replacement of the nucleus pulposus. Acta Biomater 7:3412–3421

    Article  CAS  PubMed  Google Scholar 

  • Brett CT (2000) Cellulose microfibrils in plants: biosynthesis, deposition, and integration into the cell wall. Int Rev Cytol 199:161–199

    Article  CAS  PubMed  Google Scholar 

  • Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169

    Article  CAS  PubMed  Google Scholar 

  • Brown EE, Laborie MPG, Zhang J (2012) Glutaraldehyde treatment of bacterial cellulose/fibrin composites: impact on morphology, tensile and viscoelastic properties. Cellulose 19:127–137

    Article  CAS  Google Scholar 

  • Brown EE, Hu D, Abu Lail N, Zhang X (2013) Potential of nanocrystalline cellulose-fibrin nanocomposites for artificial vascular graft applications. Biomacromolecules 14:1063–1071

    Article  CAS  PubMed  Google Scholar 

  • Butcher M (2011) Catch or kill? How DACC technology redefines antimicrobial management. Br J Nurs/Br J Community Nurs 13:S15–S16

    Google Scholar 

  • Butchosa N, Brown C, Larsson PT, Berglund LA, Bulone V, Zhou Q (2013) Nanocomposites of bacterial cellulose nanofibers and chitin nanocrystals: fabrication, characterization and bactericidal activity. Green Chem 15:3404–3413

    Article  CAS  Google Scholar 

  • Cacicedo ML, León IE, Gonzalez JS, Porto LM, Alvarez VA, Castro GR (2016) Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells. Colloids Surf B Biointerfaces 140:421–429

    Article  CAS  Google Scholar 

  • Cacicedo ML, Islan GA, Drachemberg MF, Alvarez VA, Bartel L, Bolzán AD, Castro GR (2018) Hybrid bacterial cellulose – pectin films for delivery of bioactive molecules. New J Chem 42:7457–7467

    Article  CAS  Google Scholar 

  • Cai Z, Kim J (2010) Bacterial cellulose/poly (ethylene glycol) composite: characterization and first evaluation of biocompatibility. Cellulose 17:83–91

    Article  CAS  Google Scholar 

  • Cai H, Wu B, Liu Y, Li Y, Shi L, Gong L, Xia Y, Heng B, Wu H, Ouyang H, Zhu Z, Zou X (2018) Local delivery of stromal cell-derived factor-1α improves the pregnancy rate of injured uterus through the promotion of endometrial and vascular regeneration. In: bioRvix https://doi.org/10.1101/251579

  • Carlsson DO, Hua K, Forsgren J, Mihranyan A (2014a) Aspirin degradation in surface-charged TEMPO-oxidized mesoporous crystalline nanocellulose. Int J Pharm 461:74–81

    Article  CAS  PubMed  Google Scholar 

  • Carlsson L, Fall A, Chaduc I, Wågberg L, Charleux B, Malmström E, D’Agosto F, Lansalot M, Carlmark A (2014b) Modification of cellulose model surfaces by cationic polymer latexes prepared by RAFT-mediated surfactant-free emulsion polymerization. Polym Chem 5:6076–6086

    Article  CAS  Google Scholar 

  • Cavicchioli M, Corso CT, Coelho F, Mendes L, Saska S, Soares CP, Souza FO, Franchi LP, Capote TSO, Scarel-Caminaga RM, Messaddeq Y, Ribeiro SJL (2015) Characterization and cytotoxic, genotoxic and mutagenic evaluations of bacterial cellulose membranes incorporated with ciprofloxacin: a potential material for use as therapeutic contact lens. World J Pharm Pharm Sci 4:1626–1647

    CAS  Google Scholar 

  • Cha R, He Z, Ni Y (2012) Preparation and characterization of thermal/pH-sensitive hydrogel from carboxylated nanocrystalline cellulose. Carbohydr Polym 88:713–718

    Article  CAS  Google Scholar 

  • Chang C, Wang M (2013) Preparation of microfibrillated cellulose composites for sustained release of H2O2 or O2 for biomedical applications. ACS Sustain Chem Eng 1:1129–1134

    Article  CAS  Google Scholar 

  • Charpentier PA, Maguire A, Wan W k. (2006) Surface modification of polyester to produce a bacterial cellulose-based vascular prosthetic device. Appl Surf Sci 252:6360–6367

    Article  CAS  Google Scholar 

  • Cheginia SP, Meamar R (2018) Varshosaz J (2018) Co- delivery of Venlafaxine and Doxycycline by films of cellulose nanofibers for diabetic foot ulcers. Pharm Updat 1:36–37

    Google Scholar 

  • Chen S, Huang Y (2015) Bacterial cellulose nanofibers decorated with phthalocyanine: preparation, characterization and dye removal performance. Mater Lett 142:235–237

    Article  CAS  Google Scholar 

  • Chen YM, Xi T, Zheng Y, Guo T, Hou J, Wan Y, Gao C (2009) In vitro cytotoxicity of bacterial cellulose scaffolds used for tissue-engineered bone. J Bioact Compat Polym 24:137–145

    Article  CAS  Google Scholar 

  • Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811

    Article  CAS  Google Scholar 

  • Chen X, Zhou R, Chen B, Chen J (2016) Nanohydroxyapatite/cellulose nanocrystals/silk fibroin ternary scaffolds for rat calvarial defect regeneration. RSC Adv 6:35684–35691

    Article  CAS  Google Scholar 

  • Chen C, Chen X, Zhang H, Zhang Q, Wang L, Li C, Dai B, Yang J, Liu J, Sun D (2017) Electrically-responsive core-shell hybrid microfibers for controlled drug release and cell culture. Acta Biomater 55:434–442

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Yu H, Lee SY, Wei T, Li J, Fan Z (2018) Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev 47:2837–2872

    Article  CAS  PubMed  Google Scholar 

  • Cheng F, Liu C, Wei X, Yan T, Li H, He J, Huang Y (2017a) Preparation and characterization of 2,2,6,6-tetramethylpiperidine-1- oxyl (TEMPO)-oxidized cellulose nanocrystal/alginate biodegradable composite dressing for hemostasis applications. ACS Sustain Chem Eng 5:3819–3828

    Article  CAS  Google Scholar 

  • Cheng M, Qin Z, Hu S, Dong S, Ren Z, Yu H (2017b) Achieving long-term sustained drug delivery for electrospun biopolyester nanofibrous membranes by introducing cellulose nanocrystals. ACS Biomater Sci Eng 3:1666–1676

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Zhang D, Gu Z, Li Z, Hong Y, Li C (2018) Preparation of acetylated nanofibrillated cellulose from corn stalk microcrystalline cellulose and its reinforcing effect on starch films. Int J Biol Macromol 111:959–966

    Article  CAS  PubMed  Google Scholar 

  • Chiaoprakobkij N, Sanchavanakit N, Subbalekha K, Pavasant P, Phisalaphong M (2011) Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts. Carbohydr Polym 85:548–553

    Article  CAS  Google Scholar 

  • Chi-Fung LV, Dunn CK, Zhang Z, Deng Y, Qi HJ (2017) Direct Ink Write (DIW) 3D printed cellulose nanocrystal aerogel structures. Sci Rep 7:1–8

    Article  CAS  Google Scholar 

  • Chinga-Carrasco G, Syverud K (2014) Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels. J Biomater Appl 29:423–432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiulan I, Mihaela Panaitescu D, Nicoleta Frone A, Teodorescu M, Andi Nicolae C, Căşărică A, Tofan V, Sălăgeanu A (2016) Biocompatible polyhydroxyalkanoates/bacterial cellulose composites: preparation, characterization, and in vitro evaluation. J Biomed Mater Res Part A 104A:2576–2584

    Article  CAS  Google Scholar 

  • Chu PK, Chen JY, Wang LP, Huang N (2002) Plasma-surface modification of biomaterials. Mater Sci Eng R Rep 36:143–206

    Article  Google Scholar 

  • Ciechańska D (2004) Multifunctional bacterial cellulose/chitosan composite materials for medical applications. Fibres Text East Eur 12:69–72

    Google Scholar 

  • Courtenay JC, Johns MA, Galembeck F, Deneke C, Lanzoni EM, Costa CA, Scott JL, Sharma RI (2017) Surface modified cellulose scaffolds for tissue engineering. Cellulose 24:253–267

    Article  CAS  PubMed  Google Scholar 

  • Csoka L, Hoeger IC, Rojas OJ, Peszlen I, Pawlak JJ, Peralta PN (2012) Piezoelectric effect of cellulose nanocrystals thin films. ACS Macro Lett 1:867–870

    Article  CAS  Google Scholar 

  • Czaja W, Krystynowicz A, Bielecki S, Brown RM (2006) Microbial cellulose – the natural power to heal wounds. Biomaterials 27:145–151

    Article  CAS  PubMed  Google Scholar 

  • Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12

    Article  CAS  PubMed  Google Scholar 

  • Dash R, Foston M, Ragauskas AJ (2013) Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers. Carbohydr Polym 91:638–645

    Article  CAS  PubMed  Google Scholar 

  • De France KJ, Yager KG, Chan KJW, Corbett B, Cranston ED, Hoare T (2017) Injectable anisotropic nanocomposite hydrogels direct in situ growth and alignment of myotubes. Nano Lett 17:6487–6495

    Article  PubMed  CAS  Google Scholar 

  • De Lima Fontes M, Meneguin AB, Tercjak A, Gutierrez J, Cury BSF, Dos Santos AM, Ribeiro SJL, Barud HS (2018) Effect of in situ modification of bacterial cellulose with carboxymethylcellulose on its nano/microstructure and methotrexate release properties. Carbohydr Polym 179:126–134

    Article  PubMed  CAS  Google Scholar 

  • De Macedo NL, Silva Matuda F da, Macedo LGS de, Monteiro ASF, Valera MC, Carvalho YR (2004) Evaluation of two membranes in guided bone tissue regeneration: histological study in rabbits. Braz J Oral Sci 3:395–400

    Google Scholar 

  • de MT de Lima F, Pinto FCM, Andrade-da-Costa BL da S, Silva JGM da, Campos Júnior O, Aguiar JL de A (2017) Biocompatible bacterial cellulose membrane in dural defect repair of rat. J Mater Sci Mater Med 28:37

    Article  PubMed  CAS  Google Scholar 

  • de Oliveira Barud HG, da Silva RR, da Silva Barud H, Tercjak A, Gutierrez J, Lustri WR, de Oliveira Junior OB, Ribeiro SJL (2016) A multipurpose natural and renewable polymer in medical applications: bacterial cellulose. Carbohydr Polym 153:406–420

    Article  PubMed  CAS  Google Scholar 

  • De Olyveira GM, Valido DP, Costa LMM, Gois PBP, Filho LX, Basmaji P (2011) First otoliths/collagen/bacterial cellulose nanocomposites as a potential scaffold for bone tissue regeneration. J Biomater Nanobiotechnol 2:239–243

    Article  CAS  Google Scholar 

  • De Souza FC, Olival-Costa H, Da Silva L, Pontes PA, Lancellotti CLP (2011) Bacterial cellulose as laryngeal medialization material: an experimental study. J Voice 25:765–769

    Article  PubMed  Google Scholar 

  • De Souza CF, Lucyszyn N, Woehl MA, Riegel-Vidotti IC, Borsali R, Sierakowski MR (2013) Property evaluations of dry-cast reconstituted bacterial cellulose/tamarind xyloglucan biocomposites. Carbohydr Polym 93:144–153

    Article  PubMed  CAS  Google Scholar 

  • Delmer DP, Amor Y (1995) Cellulose biosynthesis. Am Soc Plant Physiol 7:987–1000

    CAS  Google Scholar 

  • Di Z, Shi Z, Wajid Ullah M, Li S, Yang G (2017) A transparent wound dressing based on bacterial cellulose whisker and poly(2-hydroxyethyl methacrylate). Int J Biol Macromol 105:638–644

    Article  CAS  PubMed  Google Scholar 

  • Domingues RMA, Silva M, Gershovich P, Betta S, Babo P, Caridade SG, Mano JF, Motta A, Reis RL, Gomes ME (2015) Development of injectable hyaluronic acid/cellulose nanocrystals bionanocomposite hydrogels for tissue engineering applications. Bioconjug Chem 26:1571–1581

    Article  CAS  PubMed  Google Scholar 

  • Dong S, Cho HJ, Lee YW, Roman M (2014) Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting. Biomacromolecules 15:1560–1567

    Article  CAS  PubMed  Google Scholar 

  • Dufresne A (2017) Current opinion in colloid & interface science cellulose nanomaterial reinforced polymer nanocomposites. Curr Opin Colloid Interface Sci 29:1–8

    Article  CAS  Google Scholar 

  • Dufresne A (2018) Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites. Philos Trans R Soc A Math Phys Eng Sci 376:20170040

    Article  CAS  Google Scholar 

  • Dugan JM, Collins RF, Gough JE, Eichhorn SJ (2013) Oriented surfaces of adsorbed cellulose nanowhiskers promote skeletal muscle myogenesis. Acta Biomater 9:4707–4715

    Article  CAS  PubMed  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33

    Article  CAS  Google Scholar 

  • El Achaby M, El Miri N, Aboulkas A, Zahouily M, Bilal E, Barakat A, Solhy A (2017) Processing and properties of eco-friendly bio-nanocomposite films filled with cellulose nanocrystals from sugarcane bagasse. Int J Biol Macromol 96:340–352

    Article  PubMed  CAS  Google Scholar 

  • El Miri N, Abdelouahdi K, Barakat A, Zahouily M, Fihri A, Solhy A, El Achaby M (2015) Bio-nanocomposite films reinforced with cellulose nanocrystals: rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydr Polym 129:156–167

    Article  PubMed  CAS  Google Scholar 

  • El-naggar ME, Abdelgawad AM, Tripathi A, Rojas OJ (2017) Curdlan cryogels reinforced with cellulose nanofibrils for controlled release. J Environ Chem Eng 5:5754–5761

    Article  CAS  Google Scholar 

  • Eming SA, Smola H, Krieg T (2002) Treatment of chronic wounds: state of the art and future concepts. Cells Tissues Organs 172:105–117

    Article  CAS  PubMed  Google Scholar 

  • Esguerra M, Fink H, Laschke MW, Jeppsson A, Delbro D, Gatenholm P, Menger MD, Risberg B (2010) Intravital fluorescent microscopic evaluation of bacterial cellulose as scaffold for vascular grafts. J Biomed Mater Res Part A 93:140–149

    Google Scholar 

  • Eyholzer C, Borges De Couraça A, Duc F, Bourban PE, Tingaut P, Zimmermann T, Månson JAE, Oksman K (2011) Biocomposite hydrogels with carboxymethylated, nanofibrillated cellulose powder for replacement of the nucleus pulposus. Biomacromolecules 12:1419–1427

    Article  CAS  PubMed  Google Scholar 

  • Fadel Picheth G, Luiz Pirich C, Rita Sierakowski M, Aurélio Woehl M, Novak Sakakibara C, Fernandes C, De Souza CF, Amado Martin A, da Silva R, De Freitas RA (2017) Bacterial cellulose in biomedical applications: a review. Int J Biol Macromol 104:97–106

    Article  CAS  Google Scholar 

  • Fakes MG, Vakkalagadda BJ, Qian F, Desikan S, Gandhi RB, Lai C, Hsieh A, Franchini MK, Toale H, Brown J (2009) Enhancement of oral bioavailability of an HIV-attachment inhibitor by nanosizing and amorphous formulation approaches. Int J Pharm 370:167–174

    Article  CAS  PubMed  Google Scholar 

  • Fakhri A, Tahami S, Nejad PA (2017) Preparation and characterization of Fe3O4 -Ag 2O quantum dots decorated cellulose nano fibers as a carrier of anticancer drugs for skin cancer. J Photochem Photobiol B Biol 175:83–88

    Article  CAS  Google Scholar 

  • Fan M, Fu F (2017) Advanced high strength natural fibre composites in construction, 1st edn. Elsevier Ltd, Duxford

    Google Scholar 

  • Fang B, Wan YZ, Tang TT, Gao C, Dai KR (2009) Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Tissue Eng Part A 15:1091–1098

    Article  CAS  PubMed  Google Scholar 

  • Favi PM, Benson RS, Neilsen NR, Hammonds RL, Bates CC, Stephens CP, Dhar MS (2013) Cell proliferation, viability, and in vitro differentiation of equine mesenchymal stem cells seeded on bacterial cellulose hydrogel scaffolds. Mater Sci Eng C 33:1935–1944

    Article  CAS  Google Scholar 

  • Favier V, Chanzy H, Cavaillé JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367

    Article  CAS  Google Scholar 

  • Feng X, Yang Z, Rostom SSH, Dadmun M, Xie Y, Wang S (2017) Structural, mechanical, and thermal properties of 3D printed L-CNC/acrylonitrile butadiene styrene nanocomposites. J Appl Polym Sci 134:45082

    Article  CAS  Google Scholar 

  • Fernandes SCM, Sadocco P, Alonso-Varona A, Palomares T, Eceiza A, Silvestre AJD, Mondragon I, Freire CSR (2013) Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Appl Mater Interfaces 5:3290–3297

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo AGPR, Figueiredo ARP, Alonso-varona A, Fernandes SCM, Palomares T, Rubio-azpeitia E, Barros-timmons A, Silvestre AJD, Neto CP, Freire CSR (2013) Biocompatible bacterial cellulose-Poly(2-hydroxyethyl methacrylate) nanocomposite films. Biomed Res Int 2013:1–14

    Google Scholar 

  • Figueiredo ARP, Figueiredo AGPR, Silva NHCS, Barros-timmons A, Almeida A, Silvestre AJD, Freire CSR (2015) Antimicrobial bacterial cellulose nanocomposites prepared by in situ polymerization of 2-aminoethyl methacrylate. Carbohydr Polym 123:443–453

    Article  CAS  PubMed  Google Scholar 

  • Filpponen I, Argyropoulos DS (2015) Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels. Biomacromolecules 11(4):1060–1066

    Article  CAS  Google Scholar 

  • Fink H, Faxälv L, Molnár GF, Drotz K, Risberg B, Lindahl TL, Sellborn A (2010) Real-time measurements of coagulation on bacterial cellulose and conventional vascular graft materials. Acta Biomater 6:1125–1130

    Article  CAS  PubMed  Google Scholar 

  • Fink H, Ahrenstedt L, Bodin A, Brumer H, Gatenholm P, Krettek A, Risberg B (2011) Bacterial cellulose modified with xyloglucan bearing the adhesion peptide RGD promotes endothelial cell adhesion and metabolism – a promising modification for vascular grafts. J Tissue Eng Regen Med 5:454–463

    Article  CAS  PubMed  Google Scholar 

  • Fiorati A, Turco G, Travan A, Caneva E, Pastori N, Cametti M, Punta C, Melone L (2017) Mechanical and drug release properties of sponges from cross-linked cellulose nanofibers. ChemPlusChem 82:848–858

    Article  CAS  PubMed  Google Scholar 

  • Follain N, Marais MF, Montanari S, Vignon MR (2010) Coupling onto surface carboxylated cellulose nanocrystals. Polymer (Guildf) 51:5332–5344

    Article  CAS  Google Scholar 

  • Fontana JD, De Souza AM, Fontana CK, Torriani IL, Moreschi JC, Gallotti BJ, De Souza SJ, Narcisco GP, Bichara JA, Farah LFX (1990) Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem Biotechnol 24–25:253–264

    Article  PubMed  Google Scholar 

  • Fontenot KR, Edwards JV, Haldane D, Pircher N, Liebner F, Condon BD, Qureshi H, Yager D (2017) Designing cellulosic and nanocellulosic sensors for interface with a protease sequestrant wound-dressing prototype: implications of material selection for dressing and protease sensor design. J Biomater Appl 32:622–637

    Article  CAS  PubMed  Google Scholar 

  • Foong CY, Hamzah MSA, Razak SIA, Saidin S, Nayan NHM (2018) Influence of poly(lactic acid) layer on the physical and antibacterial properties of dry bacterial cellulose sheet for potential acute wound healing materials. Fibers Polym 19:263–271

    Article  CAS  Google Scholar 

  • Fortunati E, Puglia D, Luzi F, Santulli C, Kenny JM, Torre L (2013a) Binary PVA bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: part I. Carbohydr Polym 97:825–836

    Article  CAS  PubMed  Google Scholar 

  • Fortunati E, Puglia D, Monti M, Santulli C, Maniruzzaman M, Kenny JM (2013b) Cellulose nanocrystals extracted from okra fibers in PVA nanocomposites. J Appl Polym Sci 128:3220–3230

    Article  CAS  Google Scholar 

  • Fox JD, Capadona JR, Marasco PD, Rowan SJ (2013) Bioinspired water-enhanced mechanical gradient nanocomposite films that mimic the architecture and properties of the squid beak. J Am Chem Soc 135:5167–5174

    Article  CAS  PubMed  Google Scholar 

  • Fragal EH, Cellet TSP, Fragal VH, Companhoni MVP, Ueda-Nakamura T, Muniz EC, Silva R, Rubira AF (2016) Hybrid materials for bone tissue engineering from biomimetic growth of hydroxiapatite on cellulose nanowhiskers. Carbohydr Polym 152:734–746

    Article  CAS  PubMed  Google Scholar 

  • Frey M, Widner D, Segmehl JS, Casdorff K, Keplinger T, Burgert I (2018) Delignified and densified cellulose bulk materials with excellent tensile properties for sustainable engineering. ACS Appl Mater Interfaces 10:5030–5037

    Article  CAS  PubMed  Google Scholar 

  • Fu L, Zhang Y, Li C, Wu Z, Zhuo Q, Huang X, Qiu G, Zhou P, Yang G (2012) Skin tissue repair materials from bacterial cellulose by a multilayer fermentation method. J Mater Chem 22:12349–12357

    Article  CAS  Google Scholar 

  • Fu L, Zhou P, Zhang S, Yang G (2013) Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation. Mater Sci Eng C 33:2995–3000

    Article  CAS  Google Scholar 

  • Galkina OL, Ivanov VK, Agafonov AV, Seisenbaeva GA, Kessler VG (2015) Cellulose nanofiber–titania nanocomposites as potential drug delivery systems for dermal applications. J Mater Chem B 3:1688–1698

    Article  CAS  PubMed  Google Scholar 

  • Gama M, Gatenholm P, Klemm D (2012) Bacterial nanocellulose: a sophisticated multifunctional material. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Gao C, Wan Y, Yang C, Dai K, Tang T, Luo H, Wang J (2011) Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold. J Porous Mater 18:139–145

    Article  CAS  Google Scholar 

  • Gao J, Li Q, Chen W, Liu Y, Yu H (2014) Self-assembly of nanocellulose and indomethacin into hierarchically ordered structures with high encapsulation efficiency for sustained release applications. ChemPlusChem 79:725–731

    Article  CAS  Google Scholar 

  • Gimenez RB, Leonardi L, Cerrutti P, Amalvy J, Chiacchiarelli LM (2017) Improved specific thermomechanical properties of polyurethane nanocomposite foams based on castor oil and bacterial nanocellulose. J Appl Polym Sci 134:44982

    Article  CAS  Google Scholar 

  • Girouard NM, Xu S, Schueneman GT, Shofner ML, Meredith JC (2016) Site-selective modification of cellulose nanocrystals with isophorone diisocyanate and formation of polyurethane-CNC composites. ACS Appl Mater Interfaces 8:1458–1467

    Article  CAS  PubMed  Google Scholar 

  • Goldschmidt E, Cacicedo M, Kornfeld S, Valinoti M, Ielpi M, Ajler PM, Yampolsky C, Rasmussen J, Castro GR, Argibay P (2016) Construction and in vitro testing of a cellulose dura mater graft. Neurol Res 38:25–31

    Article  PubMed  CAS  Google Scholar 

  • Golshan M, Salami-Kalajahi M, Roghani-Mamaqani H, Mohammadi M (2017) Poly(propylene imine) dendrimer-grafted nanocrystalline cellulose: doxorubicin loading and release behavior. Polym (UK) 117:287–294

    Article  CAS  Google Scholar 

  • Gonçalves S, Padrão J, Rodrigues IP, Silva JP, Sencadas V, Lanceros-Mendez S, Girão H, Dourado F, Rodrigues LR (2015) Bacterial cellulose as a support for the growth of retinal pigment epithelium. Biomacromolecules 16:1341–1351

    Article  PubMed  CAS  Google Scholar 

  • Gonçalves S, Rodrigues IP, Padrão J, Silva JP, Sencadas V, Lanceros-Mendez S, Girão H, Gama FM, Dourado F, Rodrigues LR (2016) Acetylated bacterial cellulose coated with urinary bladder matrix as a substrate for retinal pigment epithelium. Colloids Surf B Biointerfaces 139:1–9

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez JS, Ludueña LN, Ponce A, Alvarez VA (2014) Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater Sci Eng C 34:54–61

    Article  CAS  Google Scholar 

  • Gorgieva S, Girandon L, Kokol V (2017) Mineralization potential of cellulose-nanofibrils reinforced gelatine scaffolds for promoted calcium deposition by mesenchymal stem cells. Mater Sci Eng C 73:478–489

    Article  CAS  Google Scholar 

  • Gotta J, Shalom TB, Aslanoglou S, Cifuentes-Rius A, Voelcker NH, Elnathan R, Shoseyov O, Richter S (2018) Stable white light-emitting biocomposite films. Adv Funct Mater 28:1706967

    Article  CAS  Google Scholar 

  • Goussé C, Chanzy H, Cerrada ML, Fleury E (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer (Guildf) 45:1569–1575

    Article  CAS  Google Scholar 

  • Grande CJ, Torres FG, Gomez CM, Bañó MC (2009) Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater 5:1605–1615

    Article  CAS  PubMed  Google Scholar 

  • Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21:6642–6646

    Article  CAS  PubMed  Google Scholar 

  • Guo R, Lan Y, Xue W, Cheng B, Zhang Y, Wang C, Ramakrishna S (2017) Collagen-cellulose nanocrystal scaffolds containing curcumin-loaded microspheres on infected full-thickness burns repair. J Tissue Eng Regen Med 11:3544–3555

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez-hernández JM, Escobar-garcía DM, Escalante A, Flores H, González FJ, Gatenholm P, Toriz G (2017) In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multi-walled carbon nanotubes as scaffold for bone regeneration. Mater Sci Eng C 75:445–453

    Article  CAS  Google Scholar 

  • Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542

    Article  CAS  PubMed  Google Scholar 

  • Haimer E, Wendland M, Schlufter K, Frankenfeld K, Miethe P, Potthast A, Rosenau T, Liebner F (2010) Loading of bacterial cellulose aerogels with bioactive compounds by antisolvent precipitation with supercritical carbon dioxide. Macromol Symp 294:64–74

    Article  CAS  Google Scholar 

  • Håkansson KMO, Henriksson IC, de la Peña Vázquez C, Kuzmenko V, Markstedt K, Enoksson P, Gatenholm P (2016) Solidification of 3D printed nanofibril hydrogels into functional 3D cellulose structures. Adv Mater Technol 1:1600096

    Article  CAS  Google Scholar 

  • Hakkarainen T, Koivuniemi R, Kosonen M, Escobedo-lucea C, Sanz-garcia A, Vuola J, Valtonen J, Tammela P, Mäkitie A, Luukko K, Yliperttula M, Kavola H (2016) Nanofibrillar cellulose wound dressing in skin graft donor site treatment. J Control Release 244:292–301

    Article  CAS  PubMed  Google Scholar 

  • Halib N, Mohd Amin MCI, Ahmad I (2010) Unique stimuli responsive characteristics of electron beam synthesized bacterial cellulose/acrylic acid composite. J Appl Polym Sci 116:2920–2929

    CAS  Google Scholar 

  • Halib N, Mohd Amin MCI, Ahmad I, Abrami M, Fiorentino S, Farra R, Grassi G, Musiani F, Lapasin R, Grassi M (2014) Topological characterization of a bacterial cellulose-acrylic acid polymeric matrix. Eur J Pharm Sci 62:326–333

    Article  CAS  PubMed  Google Scholar 

  • Hamdan MA, Adam F, Amin KNM (2018) Investigation of mixing time on carrageenan- cellulose nanocrystals(CNC) hard capsule for drug delivery carrier. Int J Innov Sci Res Technol 3:457–461

    Google Scholar 

  • Harris JP, Hess AE, Rowan SJ, Weder C, Zorman CA, Tyler DJ, Capadona JR (2011) In vivo deployment of mechanically adaptive nanocomposites for intracortical microelectrodes. J Neural Eng 8:046010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4:2238–2244

    Article  CAS  Google Scholar 

  • He X, Xiao Q, Lu C, Wang Y, Zhang X, Zhao J, Zhang W, Zhang X, Deng Y (2014) Uniaxially aligned electrospun all-cellulose nanocomposite nanofibers reinforced with cellulose nanocrystals: scaffold for tissue engineering. Biomacromolecules 15:618–627

    Article  CAS  PubMed  Google Scholar 

  • Hemraz UD, Lu A, Sunasee R, Boluk Y (2014) Structure of poly(N-isopropylacrylamide) brushes and steric stability of their grafted cellulose nanocrystal dispersions. J Colloid Interface Sci 430:157–165

    Article  CAS  PubMed  Google Scholar 

  • Hemraz UD, Campbell K a, Burdick JS, Ckless K, Boluk Y, Sunasee R (2015) Cationic poly(2-aminoethylmethacrylate) and poly (N- (2- aminoethylmethacrylamide)) modified cellulose nanocrystals: synthesis, characterization, and cytotoxicity. Biomacromolecules 16:319–325

    Article  CAS  PubMed  Google Scholar 

  • Heßler N, Klemm D (2009) Alteration of bacterial nanocellulose structure by in situ modification using polyethylene glycol and carbohydrate additives. Cellulose 16:899–910

    Article  CAS  Google Scholar 

  • Hokkanen S, Bhatnagar A, Sillanpää M (2016) A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res 91:156–173

    Article  CAS  PubMed  Google Scholar 

  • Hossain KMZ, Ahmed I, Parsons AJ, Scotchford CA, Walker GS, Thielemans W, Rudd CD (2012) Physico-chemical and mechanical properties of nanocomposites prepared using cellulose nanowhiskers and poly(lactic acid). J Mater Sci 47:2675–2686

    Article  CAS  Google Scholar 

  • Hossain KMZ, Hasan MS, Boyd D, Rudd CD, Ahmed I, Thielemans W (2014) Effect of cellulose nanowhiskers on surface morphology, mechanical properties, and cell adhesion of melt-drawn polylactic acid fibers. Biomacromolecules 15:1498–1506

    Article  CAS  PubMed  Google Scholar 

  • Hou A, Zhou M, Wang X (2009) Preparation and characterization of durable antibacterial cellulose biomaterials modified with triazine derivatives. Carbohydr Polym 75:328–332

    Article  CAS  Google Scholar 

  • Hou L, Fang J, Wang W, Xie Z, Dong D, Zhang N (2017) Indocyanine green-functionalized bottle brushes of poly(2-oxazoline) on cellulose nanocrystals for photothermal cancer therapy. J Mater Chem B 5:3348–3354

    Article  CAS  PubMed  Google Scholar 

  • Hou Y, Wang X, Yang J, Zhu R, Zhang Z, Li Y (2018) Development and biocompatibility evaluation of biodegradable bacterial cellulose as a novel peripheral nerve scaffold. J Biomed Mater Res Part A 106A:1288–1298

    Article  CAS  Google Scholar 

  • Hsieh YC, Yano H, Nogi M, Eichhorn SJ (2008) An estimation of the Young’s modulus of bacterial cellulose filaments. Cellulose 15:507–513

    Article  CAS  Google Scholar 

  • Hu Y, Catchmark JM (2011a) In vitro biodegradability and mechanical properties of bioabsorbable bacterial cellulose incorporating cellulases. Acta Biomater 7:2835–2845

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Catchmark JM (2011b) Integration of cellulases into bacterial cellulose: toward bioabsorbable cellulose composites. J Biomed Mater Res Part B 97:114–123

    Article  CAS  Google Scholar 

  • Hu H, Yuan W, Liu FS, Cheng G, Xu FJ, Ma J (2015) Redox-responsive polycation-functionalized cotton cellulose nanocrystals for effective cancer treatment. ACS Appl Mater Interfaces 7:8942–8951

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Hou X, Wang X, Nie J, Cai Q, Xu F (2016a) Gold nanoparticle-conjugated heterogeneous polymer brush-wrapped cellulose nanocrystals prepared by combining different controllable polymerization techniques for theranostic applications. Polym Chem 7:3107–3116

    Article  CAS  Google Scholar 

  • Hu Y, Zhu Y, Zhou X, Ruan C, Pan H, Catchmark JM (2016b) Bioabsorbable cellulose composites prepared by an improved mineral-binding process for bone defect repair. J Mater Chem B 4:1235–1246

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Chen X, Nguyen TX, Tang H, Zhang L, Yang G (2013) Nano-cellulose 3D-networks as controlled-release drug carriers. J Mater Chem B 1:2976–2984

    Article  CAS  PubMed  Google Scholar 

  • Huang J-W, Lv X-G, Li Z, Song L-J, Feng C, Xie M-K, Li C, Li H-B, Wang J-H, Zhu W-D, Chen S-Y, Wang H-P, Xu Y-M (2015) Urethral reconstruction with a 3D porous bacterial cellulose scaffold seeded with lingual keratinocytes in a rabbit model. Biomed Mater 10:055005

    Article  PubMed  CAS  Google Scholar 

  • Huey DJ, Hu JC, Athanasiou K a (2012) Unlike Bone, cartilage regeneration remains elusive. Science (80- ) 338:917–921

    Article  CAS  Google Scholar 

  • Hutchens SA, Benson RS, Evans BR, Rawn CJ, O’Neill H (2009) A resorbable calcium-deficient hydroxyapatite hydrogel composite for osseous regeneration. Cellulose 16:887–898

    Article  CAS  Google Scholar 

  • Hutmacher DW (2001) Scaffold design and fabrication technologies for engineering tissues – state of the art and future perspectives. J Biomater Sci Polym Ed 12:107–124

    Article  CAS  PubMed  Google Scholar 

  • Iguchi M, Yamanaka S, Budhiono a. (2000) Bacterial cellulose – a masterpiece of nature’s arts. J Mater Sci 35:261–270

    Article  CAS  Google Scholar 

  • Inai NH, Lewandowska AE, Ghita OR, Eichhorn SJ (2018) Interfaces in polyethylene oxide modified cellulose nanocrystal – polyethylene matrix composites. Compos Sci Technol 154:128–135

    Article  CAS  Google Scholar 

  • Jack AA, Nordli HR, Powell LC, Powell KA, Kishnani H, Olav Johnsen P, Pukstad B, Thomas DW, Chinga-carrasco G, Hill KE (2017) The interaction of wood nanocellulose dressings and the wound pathogen P. aeruginosa. Carbohydr Polym 157:1955–1962

    Article  CAS  PubMed  Google Scholar 

  • Jackson JK, Letchford K, Wasserman BZ, Ye L, Hamad WY, Burt HM (2011) The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int J Nanomedicine 6:321–330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jampala SN, Sarmadi M, Somers EB, Wong ACL, Denes FC (2008) Plasma-enhanced synthesis of bactericidal quaternary ammonium thin layers on stainless steel and cellulose surfaces. Langmuir 24:8583–8591

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Jia Y, Wang J, Hu Y, Zhang Y, Jia S (2009) Potentiality of bacterial cellulose as the scaffold of tissue engineering of cornea. In: 2009 2nd international conference on biomedical engineering and informatics. IEEE, Tianjin, pp 1–5

    Google Scholar 

  • Jiang T, James R, Kumbar SG, Laurencin CT (2014) Chitosan as a biomaterial. In: Natural and synthetic biomedical polymers, 1st edn. Elsevier, Burlington, pp 91–113

    Chapter  Google Scholar 

  • Jiang Y, Zhou J, Yang Z, Liu D, Xv X, Zhao G, Shi H, Zhang Q (2018) Dialdehyde cellulose nanocrystal/gelatin hydrogel optimized for 3D printing applications. J Mater Sci 53:11883–11900

    Article  CAS  Google Scholar 

  • Jinga SI, Voicu G, Stoica-Guzun A, Stroescu M, Grumezescu AM, Bleotu C (2014) Biocellulose nanowhiskers cement composites for endodontic use. Dig J Nanomater Biostructures 9:543–550

    Google Scholar 

  • Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stab 59:101–106

    Article  CAS  Google Scholar 

  • Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci 132:41719

    Article  CAS  Google Scholar 

  • Jorfi M, Roberts MN, Foster EJ, Weder C (2013) Physiologically responsive, mechanically adaptive bio-nanocomposites for biomedical applications. ACS Appl Mater Interfaces 5:1517–1526

    Article  CAS  PubMed  Google Scholar 

  • Juncu G, Stoica-Guzun A, Stroescu M, Isopencu G, Jinga SI (2016) Drug release kinetics from carboxymethylcellulose-bacterial cellulose composite films. Int J Pharm 510:485–492

    Article  CAS  PubMed  Google Scholar 

  • Kampeerapappun P (2016) The electrospun polyhydroxybutyrate fibers reinforced with cellulose nanocrystals: morphology and properties. J Appl Polym Sci 133:43273

    Article  CAS  Google Scholar 

  • Karaaslan MA, Tshabalala MA, Yelle DJ, Buschle-Diller G (2011) Nanoreinforced biocompatible hydrogels from wood hemicelluloses and cellulose whiskers. Carbohydr Polym 86:192–201

    Article  CAS  Google Scholar 

  • Kargarzadeh H, Mariano M, Huang J, Lin N, Ahmad I, Dufresne A, Thomas S (2017) Recent developments on nanocellulose reinforced polymer nanocomposites: a review. Polym (UK) 132:368–393

    Article  CAS  Google Scholar 

  • Karim Z, Hakalahti M, Tammelin T, Mathew AP (2017) In situ TEMPO surface functionalization of nanocellulose membranes for enhanced adsorption of metal ions from aqueous medium. RSC Adv 7:5232–5241

    Article  CAS  Google Scholar 

  • Kashani Rahimi S, Aeinehvand R, Kim K, Otaigbe JU (2017) Structure and biocompatibility of bioabsorbable nanocomposites of aliphatic-aromatic copolyester and cellulose nanocrystals. Biomacromolecules 18:2179–2194

    Article  CAS  PubMed  Google Scholar 

  • Katepetch C, Rujiravanit R, Tamura H (2013) Formation of nanocrystalline ZnO particles into bacterial cellulose pellicle by ultrasonic-assisted in situ synthesis. Cellulose 20:1275–1292

    Article  CAS  Google Scholar 

  • Kaushik M, Moores A (2016) Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem 18:622–637

    Article  CAS  Google Scholar 

  • Keskin Z, Urkmez AS, Hames EE (2017) Novel keratin modified bacterial cellulose nanocomposite production and characterization for skin tissue engineering. Mater Sci Eng C 75:1144–1153

    Article  CAS  Google Scholar 

  • Khabibullin A, Alizadehgiashi M, Khuu N, Prince E, Tebbe M, Kumacheva E (2017) Injectable shear-thinning fluorescent hydrogel formed by cellulose nanocrystals and graphene quantum dots. Langmuir 33:12344–12350

    Article  CAS  PubMed  Google Scholar 

  • Khalid A, Khan R, Ul-islam M, Khan T, Wahid F (2017a) Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds. Carbohydr Polym 164:214–221

    Article  CAS  PubMed  Google Scholar 

  • Khalid A, Ullah H, Ul-islam M, Khan R, Khan S, Ahmad F, Khan T, Wahid F (2017b) Bacterial cellulose–TiO2 nanocomposites promote healing and tissue regeneration in burn mice model. RSC Adv 7:47662–47668

    Article  CAS  Google Scholar 

  • Khan S, UI-Islam M, Khattak WA, Ullah MW, Park JK (2015) Bacterial cellulose-titanium dioxide nanocomposites: nanostructural characteristics, antibacterial mechanism, and biocompatibility. Cellulose 22:565–579

    Article  CAS  Google Scholar 

  • Khoshkava V, Kamal MR (2014) Effect of drying conditions on cellulose nanocrystal (CNC) agglomerate porosity and dispersibility in polymer nanocomposites. Powder Technol 261:288–298

    Article  CAS  Google Scholar 

  • Kim J, Cai Z, Chen Y (2010) Biocompatible bacterial cellulose composites for biomedical application. J Nanotechnol Eng Med 1:011006

    Article  CAS  Google Scholar 

  • Kim J, Cai Z, Lee HS, Choi GS, Lee DH, Jo C (2011) Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application. J Polym Res 18:739–744

    Article  CAS  Google Scholar 

  • Kim J, Kim SW, Park S, Lim KT, Seonwoo H, Kim Y, Hong BH, Choung YH, Chung JH (2013) Bacterial cellulose nanofibrillar patch as a wound healing platform of tympanic membrane perforation. Adv Healthc Mater 2:1525–1531

    Article  CAS  PubMed  Google Scholar 

  • Kirdponpattara S, Khamkeaw A, Sanchavanakit N, Pavasant P, Phisalaphong M (2015) Structural modification and characterization of bacterial cellulose-alginate composite scaffolds for tissue engineering. Carbohydr Polym 132:146–155

    Article  CAS  PubMed  Google Scholar 

  • Kirdponpattara S, Phisalaphong M, Kongruang S (2017) Gelatin-bacterial cellulose composite sponges thermally cross-linked with glucose for tissue engineering applications. Carbohydr Polym 177:361–368

    Article  CAS  PubMed  Google Scholar 

  • Klemm D (2006) Polysaccharides II, advances in polymer science. Springer US, New York

    Book  Google Scholar 

  • Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose – artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Ko SW, Soriano JPE, Lee JY, Unnithan AR, Park CH, Kim CS (2018) Nature derived scaffolds for tissue engineering applications: design and fabrication of a composite scaffold incorporating chitosan-g-D,L-lactic acid and cellulose nanocrystals from Lactuca sativa L. cv green leaf. Int J Biol Macromol 110:504–513

    Article  CAS  PubMed  Google Scholar 

  • Kolakovic R, Peltonen L, Laaksonen T, Putkisto K, Laukkanen A, Hirvonen J (2011) Spray-dried cellulose nanofibers as novel tablet excipient. AAPS PharmSciTech 12:1366–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolakovic R, Laaksonen T, Peltonen L, Laukkanen A, Hirvonen J (2012a) Spray-dried nanofibrillar cellulose microparticles for sustained drug release. Int J Pharm 430:47–55

    Article  CAS  PubMed  Google Scholar 

  • Kolakovic R, Peltonen L, Laukkanen A, Hirvonen J, Laaksonen T (2012b) Nanofibrillar cellulose films for controlled drug delivery. Eur J Pharm Biopharm 82:308–315

    Article  CAS  PubMed  Google Scholar 

  • Kolakovic R, Peltonen L, Laukkanen A, Hellman M, Laaksonen P, Linder MB, Hirvonen J, Laaksonen T (2013) Evaluation of drug interactions with nanofibrillar cellulose. Eur J Pharm Biopharm 85:1238–1244

    Article  CAS  PubMed  Google Scholar 

  • Kovalenko A (2014) Predictive multiscale modeling of nanocellulose based materials and systems. IOP Conf Ser Mater Sci Eng 64:012040

    Article  CAS  Google Scholar 

  • Kowalska-Ludwicka K, Cala J, Grobelski B, Sygut D, Jesionek-Kupnicka D, Kolodziejczyk M, Bielecki S, Pasieka Z (2013) Modified bacterial cellulose tubes for regeneration of damaged peripheral nerves. Arch Med Sci 9:527–534

    Article  PubMed  PubMed Central  Google Scholar 

  • Krontiras P, Gatenholm P, Hagg DA (2015) Adipogenic differentiation of stem cells in three-dimensional porous bacterial nanocellulose scaffolds. J Biomed Mater Res Part B Appl Biomater 103B:195–203

    Article  CAS  Google Scholar 

  • Kukharenko O, Bardeau J, Zaets I, Ovcharenko L, Tarasyuk O, Porhyn S, Mischenko I, Vovk A, Rogalsky S, Kozyrovska N (2014) Promising low cost antimicrobial composite material based on bacterial cellulose and polyhexamethylene guanidine hydrochloride. Eur Polym J 60:247–254

    Article  CAS  Google Scholar 

  • Kulkarni PK, Anil Dixit S, Singh UB (2012) Evaluation of bacterial cellulose produced fron Acetobacter xylinum as pharmacutical excipient. Am J Drug Discov Dev 2:72–86

    Article  CAS  Google Scholar 

  • Kumar A, Rao KM, Han SS (2017) Development of sodium alginate-xanthan gum based nanocomposite scaffolds reinforced with cellulose nanocrystals and halloysite nanotubes. Polym Test 63:214–225

    Article  CAS  Google Scholar 

  • Kurniawan H, Lai JT, Wang MJ (2012) Biofunctionalized bacterial cellulose membranes by cold plasmas. Cellulose 19:1975–1988

    Article  CAS  Google Scholar 

  • Kuzmenko V, Sämfors S, Hägg D, Gatenholm P (2013) Universal method for protein bioconjugation with nanocellulose scaffolds for increased cell adhesion. Mater Sci Eng C 33:4599–4607

    Article  CAS  Google Scholar 

  • Laitinen O, Suopajärvi T, Österberg M, Liimatainen H (2017) Hydrophobic, superabsorbing aerogels from choline chloride-based deep eutectic solvent pretreated and silylated cellulose nanofibrils for selective oil removal. ACS Appl Mater Interfaces 9:25029–25037

    Article  CAS  PubMed  Google Scholar 

  • Lang N, Merkel E, Fuchs F, Schumann D, Klemm D, Kramer F, Mayer-Wagner S, Schroeder C, Freudenthal F, Netz H, Kozlik-Feldmann R, Sigler M (2015) Bacterial nanocellulose as a new patch material for closure of ventricular septal defects in a pig model. Eur J Cardio-Thoracic Surg 47:1013–1021

    Article  Google Scholar 

  • Lapidot S, Meirovitch S, Sharon S, Heyman A, Kaplan DL, Shoseyov O (2012) Clues for biomimetics from natural composite materials. Nanomedicine 7:1409–1423

    Article  CAS  PubMed  Google Scholar 

  • Laranjeira M, Domingues RMA, Costa-Almeida R, Reis RL, Gomes ME (2017) 3D mimicry of native-tissue-fiber architecture guides tendon-derived cells and adipose stem cells into artificial tendon constructs. Small 13:1700689

    Article  CAS  Google Scholar 

  • Lasseuguette E (2008) Grafting onto microfibrils of native cellulose. Cellulose 15:571–580

    Article  CAS  Google Scholar 

  • Lavoine N, Desloges I, Bras J (2014) Microfibrillated cellulose coatings as new release systems for active packaging. Carbohydr Polym 103:528–537

    Article  CAS  PubMed  Google Scholar 

  • Lee KY, Aitomäki Y, Berglund LA, Oksman K, Bismarck A (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol 105:15–27

    Article  CAS  Google Scholar 

  • Lee S, An S, Lim Y, Huh J (2017) The efficacy of electron beam irradiated bacterial cellulose membranes as compared with collagen membranes on guided bone regeneration in peri-implant bone defects. Materials (Basel) 10:1018

    Article  CAS  Google Scholar 

  • Legeza VI, Galenko-Yaroshevskii VP, Zinov’ev EV, Paramonov BA, Kreichman GS, Turkovskii II, Gumenyuk ES, Karnovich AG, Khripunov AK (2004) Effects of new wound dressings on healing of thermal burns of the skin in acute radiation disease. Bull Exp Biol Med 138:311–315

    Article  CAS  PubMed  Google Scholar 

  • Leitao AF, Gupta S, Silva JP, Reviakine I, Gama M (2013) Hemocompatibility study of a bacterial cellulose/polyvinyl alcohol nanocomposite. Colloids Surf B Biointerfaces 111:493–502

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wan Y, Li L, Liang H, Wang J (2009) Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater Sci Eng C 29:1635–1642

    Article  CAS  Google Scholar 

  • Li F, Biagioni P, Bollani M, Maccagnan A, Piergiovanni L (2013) Multi-functional coating of cellulose nanocrystals for flexible packaging applications. Cellulose 20:2491–2504

    Article  CAS  Google Scholar 

  • Li W, Guo R, Lan Y, Zhang Y, Xue W, Zhang Y (2014) Preparation and properties of cellulose nanocrystals reinforced collagen composite films. J Biomed Mater Res Part A 102:1131–1139

    Article  CAS  Google Scholar 

  • Li W, Lan Y, Guo R, Zhang Y, Xue W, Zhang Y (2015a) In vitro and in vivo evaluation of a novel collagen/cellulose nanocrystals scaffold for achieving the sustained release of basic fibroblast growth factor. J Biomater Appl 29:882–893

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Jiang H, Zheng W, Gong N, Chen L, Jiang X, Yang G (2015b) Bacterial cellulose–hyaluronan nanocomposite biomaterials as wound dressings for severe skin injury repair. J Mater Chem B 3:3498–3507

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Tian Y, Zheng W, Feng Y, Huang R, Shao J, Tang R, Wang P, Jia Y, Zhang J, Zheng W, Yang G, Jiang X (2017) Composites of bacterial cellulose and small molecule-decorated gold nanoparticles for treating gram-negative bacteria-infected wounds. Small 13:1–10

    Google Scholar 

  • Li VCF, Mulyadi A, Dunn CK, Deng Y, Qi HJ (2018a) Direct ink write 3D printed cellulose nanofiber aerogel structures with highly deformable, shape recoverable, and functionalizable properties. ACS Sustain Chem Eng 6:2011–2022

    Article  CAS  Google Scholar 

  • Li Y, Fu Q, Yang X, Berglund L (2018b) Transparent wood for functional and structural applications. Philos Trans R Soc A Math Phys Eng Sci 376:pii: 20170182

    Article  CAS  Google Scholar 

  • Liebert T, Kostag M, Wotschadlo J, Heinze T (2011) Stable cellulose nanospheres for cellular uptake. Macromol Biosci 11:1387–1392

    Article  CAS  PubMed  Google Scholar 

  • Lin N, Dufresne A (2013) Physical and/or chemical compatibilization of extruded cellulose nanocrystal reinforced polystyrene nanocomposites. Macromolecules 46:5570–5583

    Article  CAS  Google Scholar 

  • Lin N, Huang J, Chang PR, Feng L, Yu J (2011a) Effect of polysaccharide nanocrystals on structure, properties, and drug release kinetics of alginate-based microspheres. Colloids Surf B Biointerfaces 85:270–279

    Article  CAS  PubMed  Google Scholar 

  • Lin YK, Chen KH, Ou KL, Liu M (2011b) Effects of different extracellular matrices and growth factor immobilization on biodegradability and biocompatibility of macroporous bacterial cellulose. J Bioact Compat Polym 26:508–518

    Article  CAS  Google Scholar 

  • Lin N, Bruzzese C, Dufresne A (2012a) TEMPO-oxidized nanocellulose participating as crosslinking aid for alginate-based sponges. ACS Appl Mater Interfaces 4:4948–4959

    Article  CAS  PubMed  Google Scholar 

  • Lin N, Huang J, Dufresne A (2012b) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4:3274

    Article  CAS  PubMed  Google Scholar 

  • Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013a) Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr Polym 94:603–611

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Guan Z, Huang Z (2013b) New bacterial cellulose/polyaniline nanocomposite film with one conductive side through constrained interfacial polymerization. Ind Eng Chem Res 52:2869–2874

    Article  CAS  Google Scholar 

  • Lin Q, Zheng Y, Ren L, Wu J, Wang H, An J, Fan W (2014) Preparation and characteristic of a sodium alginate/carboxymethylated bacterial cellulose composite with a crosslinking Semi-interpenetrating network. J Appl Polym Sci 131:1–9

    Article  CAS  Google Scholar 

  • Lin N, Gèze A, Wouessidjewe D, Huang J, Dufresne A (2016) Biocompatible double-membrane hydrogels from cationic cellulose nanocrystals and anionic alginate as complexing drugs codelivery. ACS Appl Mater Interfaces 8:6880–6889

    Article  CAS  PubMed  Google Scholar 

  • Lin S-P, Kung H-N, Tsai Y-S, Tseng T-N, Hsu K-D, Cheng KC (2017) Novel dextran modified bacterial cellulose hydrogel accelerating cutaneous wound healing. Cellulose 24:4927–4937

    Article  CAS  Google Scholar 

  • Liu P, Borrell PF, Božič M, Kokol V, Oksman K, Mathew AP (2015) Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+ and Fe3+ from industrial effluents. J Hazard Mater 294:177–185

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Chinga-Carrasco G, Cheng F, Xu W, Willför S, Syverud K, Xu C (2016) Hemicellulose-reinforced nanocellulose hydrogels for wound healing application. Cellulose 23:3129–3143

    Article  CAS  Google Scholar 

  • Liu L, Yang X, Ye L, Xue D, Liu M, Jia S, Hou Y, Chu L-Q, Zhong C (2017) Preparation and characterization of a photocatalytic antibacterial material: graphene oxide/TiO2/bacterial cellulose nanocomposite. Carbohydr Polym 174:1078–1086

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Zhou C, Liu X, Xu Y, Geng S, Chen Y, Wei C, Yu C (2018a) PMMA@SCNC composite microspheres prepared from pickering emulsion template as curcumin delivery carriers. J Appl Polym Sci 135:46127

    Article  CAS  Google Scholar 

  • Liu Y, Sui Y, Liu C, Liu C, Wu M, Li B, Li Y (2018b) A physically crosslinked polydopamine/nanocellulose hydrogel as potential versatile vehicles for drug delivery and wound healing. Carbohydr Polym 188:27–36

    Article  CAS  PubMed  Google Scholar 

  • Liyaskina E, Revin V, Paramonova E, Nazarkina M, Pestov N, Revina N, Kolesnikova S (2017) Nanomaterials from bacterial cellulose for antimicrobial wound dressing. J Phys Conf Ser 784:1–7

    Article  CAS  Google Scholar 

  • Löbmann K, Svagan AJ (2017) Cellulose nanofibers as excipient for the delivery of poorly soluble drugs. Int J Pharm 533:285–297

    Article  PubMed  CAS  Google Scholar 

  • Loh EYX, Mohamad N, Fauzi MB, Ng MH, Ng SF, Mohd Amin MCI (2018) Development of a bacterial cellulose-based hydrogel cell carrier containing keratinocytes and fibroblasts for full-thickness wound healing. Sci Rep 8:2875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loures BR (2004) Endoprosthesis process to obtain and methods used. Google patents

    Google Scholar 

  • Lu T, Li Q, Chen W, Yu H (2014) Composite aerogels based on dialdehyde nanocellulose and collagen for potential applications as wound dressing and tissue engineering scaffold. Compos Sci Technol 94:132–138

    Article  CAS  Google Scholar 

  • Luan J, Wu J, Zheng Y, Song W, Wang G, Guo J, Ding X (2012) Impregnation of silver sulfadiazine into bacterial cellulose for antimicrobial and biocompatible wound dressing. Biomed Mater 7:1–11

    Article  CAS  Google Scholar 

  • Ludwicka K, Jedrzejczak-Krzepkowska M, Kubiak K, Kolodziejczyk M, Pankiewicz T, Bielecki S (2016) Medical and cosmetic applications of bacterial nanocellulose. In: Bacterial nanocellulose. Elsevier, Amsterdam, pp 145–165

    Chapter  Google Scholar 

  • Luo H, Xiong G, Hu D, Ren K, Yao F, Zhu Y, Gao C, Wan Y (2013) Characterization of TEMPO-oxidized bacterial cellulose scaffolds for tissue engineering applications. Mater Chem Phys 143:373–379

    Article  CAS  Google Scholar 

  • Luo H, Ao H, Li G, Li W, Xiong G, Zhu Y (2017) Bacterial cellulose/graphene oxide nanocomposite as a novel drug delivery system. Curr Appl Phys 17:249–254

    Article  Google Scholar 

  • Lv X, Yang J, Feng C, Li Z, Chen S, Xie M, Huang J, Li H, Wang H, Xu Y (2016) Bacterial cellulose-based biomimetic nanofibrous scaffold with muscle cells for hollow organ tissue engineering. ACS Biomater Sci Eng 2:19–29

    Article  CAS  PubMed  Google Scholar 

  • Lv X, Feng C, Liu Y, Peng X, Chen S, Xiao D, Wang ZL, Xu Y, Lu M (2018) A smart bilayered scaffold supporting keratinocytes and muscle cells in micro/nano-scale for urethral reconstruction. Theranostics 8:3153–3163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma S, Akbari M, Jahani-kadosarai M (2017) Assessing the loading and release of metronidazole from bacterial cellulose film as a pharmaceutical dressing. J Kashan Univ Med Sci 21:240–246

    Google Scholar 

  • Mahmoud KA, Mena JA, Male KB, Hrapovic S, Kamen A, Luong JHT (2010) Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals. ACS Appl Mater Interfaces 2:2924–2932

    Article  CAS  PubMed  Google Scholar 

  • Male KB, Leung ACW, Montes J, Kamen A, Luong JHT (2012) Probing inhibitory effects of nanocrystalline cellulose: inhibition versus surface charge. Nanoscale 4:1373

    Article  CAS  PubMed  Google Scholar 

  • Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51

    Article  CAS  Google Scholar 

  • Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184:632–633

    Article  CAS  Google Scholar 

  • Maria LCS, Santos ALC, Oliveira PC, Valle ASS, Barud HS, Messaddeq Y, Ribeiro SJL (2010) Preparation and antibacterial activity of silver nanoparticles impregnated in bacterial cellulose. Polímeros 20:72–77

    Article  CAS  Google Scholar 

  • Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci Part B Polym Phys 52:791–806

    Article  CAS  Google Scholar 

  • Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P (2015) 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16:1489–1496

    Article  CAS  PubMed  Google Scholar 

  • Markstedt K, Escalante A, Toriz G, Gatenholm P (2017) Biomimetic inks based on cellulose nanofibrils and cross-linkable xylans for 3D printing. ACS Appl Mater Interfaces 9:40878–40886

    Article  CAS  PubMed  Google Scholar 

  • Martínez Ávila H, Schwarz S, Feldmann EM, Mantas A, Von Bomhard A, Gatenholm P, Rotter N (2014) Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration. Appl Microbiol Biotechnol 98:7423–7435

    Article  PubMed  CAS  Google Scholar 

  • Martínez Ávila H, Feldmann EM, Pleumeekers MM, Nimeskern L, Kuo W, de Jong WC, Schwarz S, Müller R, Hendriks J, Rotter N, van Osch GJVM, Stok KS, Gatenholm P (2015) Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo. Biomaterials 44:122–133

    Article  PubMed  CAS  Google Scholar 

  • Martínez H, Brackmann C, Enejder A, Gatenholm P (2012) Mechanical stimulation of fibroblasts in micro-channeled bacterial cellulose scaffolds enhances production of oriented collagen fibers. J Biomed Mater Res Part A 100(A):948–957

    Article  CAS  Google Scholar 

  • Mathew AP, Oksman K, Pierron D, Harmand MF (2012) Fibrous cellulose nanocomposite scaffolds prepared by partial dissolution for potential use as ligament or tendon substitutes. Carbohydr Polym 87:2291–2298

    Article  CAS  Google Scholar 

  • Mathew AP, Oksman K, Pierron D, Harmand MF (2013) Biocompatible fibrous networks of cellulose nanofibres and collagen crosslinked using genipin: potential as artificial ligament/tendons. Macromol Biosci 13:289–298

    Article  CAS  PubMed  Google Scholar 

  • Mauricio MR, da Costa PG, Haraguchi SK, Guilherme MR, Muniz EC, Rubira AF (2015) Synthesis of a microhydrogel composite from cellulose nanowhiskers and starch for drug delivery. Carbohydr Polym 115:715–722

    Article  CAS  PubMed  Google Scholar 

  • Meesorn W, Shirole A, Vanhecke D, De Espinosa LM, Weder C (2017) A simple and versatile strategy to improve the mechanical properties of polymer nanocomposites with cellulose nanocrystals. Macromolecules 50:2364–2374

    Article  CAS  Google Scholar 

  • Meirovitch S, Shtein Z, Ben-Shalom T, Lapidot S, Tamburu C, Hu X, Kluge JA, Raviv U, Kaplan DL, Shoseyov O (2016) Spider silk-CBD-cellulose nanocrystal composites: mechanism of assembly. Int J Mol Sci 17:1573

    Article  PubMed Central  CAS  Google Scholar 

  • Mello LR, Feltrin LT, Fontes Neto PT, Ferraz FAP (1997) Duraplasty with biosynthetic cellulose: an experimental study. J Neurosurg 86:143–150

    Article  CAS  PubMed  Google Scholar 

  • Meneguin AB, Cury BSF, Dos Santos AM, Faza Franco D, Barud HS, Da Silva Filho EC (2017) Resistant starch/pectin free-standing films reinforced with nanocellulose intended for colonic methotrexate release. Carbohydr Polym 157:1013–1023

    Article  CAS  PubMed  Google Scholar 

  • Mertaniemi H, Escobedo-Lucea C, Sanz-Garcia A, Gandía C, Mäkitie A, Partanen J, Ikkala O, Yliperttula M (2016) Human stem cell decorated nanocellulose threads for biomedical applications. Biomaterials 82:208–220

    Article  CAS  PubMed  Google Scholar 

  • Messaddeq Y, Ribeiro SJL, Thomazini W (2008) Contact lens for therapy, method and apparatus for their production and use. Brazil patent BR, PI0603704-6

    Google Scholar 

  • Mihaela Jipa I, Dobre L, Stroescu M, Stoica-Guzun A, Jinga S, Dobre T (2012) Preparation and characterization of bacterial cellulose-poly(vinyl alcohol) films with antimicrobial properties. Mater Lett 66:125–127

    Article  CAS  Google Scholar 

  • Millon LE, Wan WK (2006) The polyvinyl alcohol–bacterial cellulose system as a new nanocomposite for biomedical applications. J Biomed Mater Res B Appl Biomater 79:245–253

    Article  CAS  PubMed  Google Scholar 

  • Millon LE, Guhados G, Wan W (2008) Anisotropic polyvinyl alcohol-bacterial cellulose nanocomposite for biomedical applications. J Biomed Mater Res Part B Appl Biomater 86:444–452

    Article  CAS  Google Scholar 

  • Mo Y, Guo R, Zhang Y, Xue W, Cheng B, Zhang Y (2017) Controlled dual delivery of angiogenin and curcumin by electrospun nanofibers for skin regeneration. Tissue Eng Part A 23:597–608

    Article  CAS  PubMed  Google Scholar 

  • Mohamad N, Mohd Amin MCI, Pandey M, Ahmad N, Fadilah N (2014) Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model. Carbohydr Polym 114:312–320

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi H (2011) Nanocomposite biomaterial mimicking aortic heart valve leaflet mechanical behaviour. Proc Inst Mech Eng Part H J Eng Med 225:718–722

    Article  CAS  Google Scholar 

  • Mohammadnejad J, Yazdian F, Omidi M, Rostami AD, Rasekh B, Fathinia A (2018) Graphene oxide/silver nanohybrid: optimization, antibacterial activity and its impregnation on bacterial cellulose as a potential wound dressing based on GO-Ag nanocomposite-coated BC. Eng Life Sci 18:298–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohanta V, Madras G, Patil S (2014) Layer-by-layer assembled thin films and microcapsules of nanocrystalline cellulose for hydrophobic drug delivery. ACS Appl Mater Interfaces 6:20093–20101

    Article  CAS  PubMed  Google Scholar 

  • Mohd Amin MCI, Abadi AG, Ahmad N, Katas H, Jamal JA (2012a) Bacterial cellulose film coating as drug delivery system: physicochemical, thermal and drug release properties. Sains Malaysiana 41:561–568

    Google Scholar 

  • Mohd Amin MCI, Ahmad N, Halib N, Ahmad I (2012b) Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym 88:465–473

    Article  CAS  Google Scholar 

  • Möller T, Amoroso M, Hägg D, Brantsing C, Rotter N, Apelgren P, Lindahl A, Kölby L, Gatenholm P (2017) In vivo chondrogenesis in 3D bioprinted human cell-laden hydrogel constructs. Plast Reconstr Surg Glob Open 5:e1227

    Article  PubMed  PubMed Central  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994

    Article  CAS  PubMed  Google Scholar 

  • Moraes PRF de S, Saska S, Barud H, Lima LR de, Martins V da CA, Plepis AM de G, Ribeiro SJL, Gaspar AMM (2016) Bacterial cellulose/collagen hydrogel for wound healing. Mater Res 19:106–116

    Article  Google Scholar 

  • Morits M, McKee JR, Majoinen J, Malho JM, Houbenov N, Seitsonen J, Laine J, Gröschel AH, Ikkala O (2017) Polymer brushes on cellulose nanofibers: modification, SI-ATRP, and unexpected degradation processes. ACS Sustain Chem Eng 5:7642–7650

    Article  CAS  Google Scholar 

  • Moritz S, Wiegand C, Wesarg F, Hessler N, Müller FA, Kralisch D, Hipler U, Fischer D (2014) Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine. Int J Pharm 471:45–55

    Article  CAS  PubMed  Google Scholar 

  • Muangman P, Opasanon S, Suwanchot S, Thangthed O (2011) Efficiency of microbial cellulose dressing in partial-thickness burn wounds. J Am Col Certif Wound Spec 3:16–19

    PubMed  PubMed Central  Google Scholar 

  • Müller A, Ni Z, Hessler N, Wesarg F, Müller FA, Kralisch D, Fischer D (2013) The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. J Pharm Sci 102:579–592

    Article  PubMed  CAS  Google Scholar 

  • Muller D, Silva JP, Rambo CR, GMO B, Dourado F, Gama FM (2013) Neuronal cells behavior on polypyrrole coated bacterial nanocellulose three-dimensional (3D) scaffolds. J Biomater Sci Polym Ed 24:1368–1377

    Article  CAS  PubMed  Google Scholar 

  • Müller A, Zink M, Hessler N, Wesarg F, Müller FA, Kralisch D, Fischer D (2014) Bacterial nanocellulose with a shape-memory effect as potential drug delivery system. RSC Adv 4:57173–57184

    Article  CAS  Google Scholar 

  • Nakaya T, Li YJ (1999) Phospholipid polymers. Prog Polym Sci 24:143–181

    Article  CAS  Google Scholar 

  • Naseri N, Mathew AP, Girandon L, Frohlich M, Oksman K (2015) Porous electrospun nanocomposite mats based on chitosan – cellulose nanocrystals for wound dressing: effect of surface characteristics of nanocrystals. Cellulose 22:521–534

    Article  CAS  Google Scholar 

  • Naseri N, Poirier J-M, Girandon L, Fröhlich M, Oksman K, Mathew AP (2016) 3-Dimensional porous nanocomposite scaffolds based on cellulose nanofibers for cartilage tissue engineering: tailoring of porosity and mechanical performance. RSC Adv 6:5999–6007

    Article  CAS  Google Scholar 

  • Nasseri R, Mohammadi N (2014) Starch-based nanocomposites: a comparative performance study of cellulose whiskers and starch nanoparticles. Carbohydr Polym 106:432–439

    Article  CAS  PubMed  Google Scholar 

  • Ndong Ntoutoume GMA, Grassot V, Brégier F, Chabanais J, Petit J, Granet R, Sol V (2017) PEI-cellulose nanocrystal hybrids as efficient siRNA delivery agents – synthesis, physicochemical characterization and in vitro evaluation. Carbohydr Polym 164:258–267

    Article  CAS  PubMed  Google Scholar 

  • Nguyen JK, Park DJ, Skousen JL, Hess-Dunning AE, Tyler DJ, Rowan SJ, Weder C, Capadona JR (2014) Mechanically-compliant intracortical implants reduce the neuroinflammatory response. J Neural Eng 11:056014

    Article  PubMed  PubMed Central  Google Scholar 

  • Nilsson T, Rowell R (2012) Historical wood – structure and properties. J Cult Herit 13:S5–S9

    Article  Google Scholar 

  • Nimeskern L, Martínez Ávila H, Sundberg J, Gatenholm P, Müller R, Stok KS (2013) Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. J Mech Behav Biomed Mater 22:12–21

    Article  CAS  PubMed  Google Scholar 

  • Ninan N, Muthiah M, Park IK, Elain A, Thomas S, Grohens Y (2013) Pectin/carboxymethyl cellulose/microfibrillated cellulose composite scaffolds for tissue engineering. Carbohydr Polym 98:877–885

    Article  CAS  PubMed  Google Scholar 

  • Noishiki Y, Nishiyama Y, Wada M, Kuga S, Magoshi J (2002) Mechanical properties of silk fibroin-microcrystalline cellulose composite films. J Appl Polym Sci 86:3425–3429

    Article  CAS  Google Scholar 

  • Novaes AB Jr, Novaes AB, Grisi MF, Soares UN, Gabarra F (1993) Genfiflex, an alkali-cellulose membrane for GTR: histologic observations. Braz Dent J 4:65–71

    Google Scholar 

  • Ntoutoume GMAN, Granet R, Mbakidi JP, Brégier F, Léger DY, Fidanzi-Dugas C, Lequart V, Joly N, Liagre B, Chaleix V, Sol V (2016) Development of curcumin-cyclodextrin/cellulose nanocrystals complexes: new anticancer drug delivery systems. Bioorg Med Chem Lett 26:941–945

    Article  CAS  Google Scholar 

  • Numata Y, Mazzarino L, Borsali R (2015) A slow-release system of bacterial cellulose gel and nanoparticles for hydrophobic active ingredients. Int J Pharm 486:217–225

    Article  CAS  PubMed  Google Scholar 

  • Nurani M, Akbari V, Taheri A (2017) Preparation and characterization of metformin surface modified cellulose nanofiber gel and evaluation of its anti-metastatic potentials. Carbohydr Polym 165:322–333

    Article  CAS  PubMed  Google Scholar 

  • Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S (2016) Composites: part A review of the recent developments in cellulose nanocomposite processing. Compos Part A 83:2–18

    Article  CAS  Google Scholar 

  • Oliveira Barud HG, HDS B, Cavicchioli M, Do Amaral TS, De Oliveira Junior OB, Santos DM, De Oliveira Almeida Petersen AL, Celes F, Borges VM, De Oliveira CI, De Oliveira PF, Furtado RA, Tavares DC, Ribeiro SJL (2015) Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydr Polym 128:41–51

    Article  CAS  PubMed  Google Scholar 

  • Olyveira GM, Acasigua GAX, Costa LMM, Scher CR, Filho LX, Pranke PHL, Basmaji P (2013) Human dental pulp stem cell behavior using natural nanotolith/bacterial cellulose scaffolds for regenerative medicine. J Biomed Nanotechnol 9:1370–1377

    Article  CAS  PubMed  Google Scholar 

  • Onofrei M, Filimon A (2016) Cellulose-based hydrogels: designing concepts, properties, and perspectives for biomedical and environmental applications. In: Méndez-Vilas A, Solano A (eds) Polymer science: research advances, practical applications, and educational aspects. Formatex Research Center, Badajoz, pp 108–120

    Google Scholar 

  • Ooi SY, Ahmad I, Mohd Amin MCI (2016) Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems. Ind Crop Prod 93:227–234

    Article  CAS  Google Scholar 

  • Orasugh JT, Saha NR, Rana D, Sarkar G, Mollick MMR, Chattoapadhyay A, Mitra BC, Mondal D, Ghosh SK, Chattopadhyay D (2018) Jute cellulose nano- fibrils/hydroxypropylmethylcellulose nanocomposite: a novel material with potential for application in packaging and transdermal drug delivery system. Ind Crop Prod 112:633–643

    Article  CAS  Google Scholar 

  • Pääkko M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    Article  PubMed  CAS  Google Scholar 

  • Palaganas NB, Mangadlao JD, De Leon ACC, Palaganas JO, Pangilinan KD, Lee YJ, Advincula RC (2017) 3D printing of photocurable cellulose nanocrystal composite for fabrication of complex architectures via stereolithography. ACS Appl Mater Interfaces 9:34314–34324

    Article  CAS  PubMed  Google Scholar 

  • Palaninathan V, Raveendran S, Rochani AK, Chauhan N, Sakamoto Y, Ukai T, Maekawa T, Sakthi Kumar D (2018) Bioactive bacterial cellulose sulfate electrospun nanofibers for tissue engineering applications. J Tissue Eng Regen Med 12:1634–1645

    Article  CAS  PubMed  Google Scholar 

  • Pandey M, Mohd Amin MCI, Ahmad N, Abeer MM (2013) Rapid synthesis of superabsorbent smart-swelling bacterial cellulose/acrylamide-based hydrogels for drug delivery. Int J Polym Sci 2013:905471

    Article  CAS  Google Scholar 

  • Pandey M, Mohamad N, Low W, Martin C, Mohd Amin MCI (2017) Microwaved bacterial cellulose-based hydrogel microparticles for the healing of partial thickness burn wounds. Drug Deliv Transl Res 7:89–99

    Article  CAS  PubMed  Google Scholar 

  • Park SU, Lee BK, Kim MS, Park KK, Sung WJ, Kim HY, Han DG, Shim JS, Lee YJ, Kim SH, Kim IH, Park DH (2012) The possibility of microbial cellulose for dressing and scaffold materials. Int Wound J 11:35–43

    Article  PubMed  PubMed Central  Google Scholar 

  • Pattison MA, Wurster S, Webster TJ, Haberstroh KM (2005) Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications. Biomaterials 26:2491–2500

    Article  CAS  PubMed  Google Scholar 

  • Paukkonen H, Kunnari M, Laurén P, Hakkarainen T, Auvinen V, Oksanen T, Koivuniemi R, Yliperttula M, Laaksonen T (2017a) Nanofibrillar cellulose hydrogels and reconstructed hydrogels as matrices for controlled drug release. Int J Pharm 532:269–280

    Article  CAS  PubMed  Google Scholar 

  • Paukkonen H, Ukkonen A, Szilvay G, Yliperttula M, Laaksonen T (2017b) Hydrophobin-nanofibrillated cellulose stabilized emulsions for encapsulation and release of BCS class II drugs. Eur J Pharm Sci 100:238–248

    Article  CAS  PubMed  Google Scholar 

  • Pavaloiu R, Stoica-guzun A, Stroescu M, Jinga SI, Dobre T (2014) Composite films of poly(vinyl alcohol)– chitosan – bacterial cellulose for drug controlled release. Int J Biol Macromol 68:117–124

    Article  CAS  PubMed  Google Scholar 

  • Pawar AA, Saada G, Cooperstein I, Larush L, Jackman JA, Tabaei SR, Cho NJ, Magdassi S (2016) High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticles. Sci Adv 2:1–8

    Article  CAS  Google Scholar 

  • Pereda M, Kissi N El, Dufresne A (2014) Extrusion of polysaccharide nanocrystal reinforced polymer nanocomposites through compatibilization with poly(ethylene oxide). ACS Appl Mater Interfaces 6:9365–9375

    Article  CAS  PubMed  Google Scholar 

  • Pertile RAN, Andrade FK, Alves C Jr, Gama M (2010) Surface modification of bacterial cellulose by nitrogen-containing plasma for improved interaction with cells. Carbohydr Polym 82:692–698

    Article  CAS  Google Scholar 

  • Pertile R, Moreira S, Andrade F, Domingues L, Gama M (2012) Bacterial cellulose modified using recombinant proteins to improve neuronal and mesenchymal cell adhesion. Biotechnol Prog 28:526–532

    Article  CAS  PubMed  Google Scholar 

  • Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91:1277–1286

    Article  CAS  PubMed  Google Scholar 

  • Picheth GF, Sierakowski MR, Woehl MA, Ono L, Cofré AR, Vanin LP, Pontarolo R, De Freitas RA (2014) Lysozyme-triggered epidermal growth factor release from bacterial cellulose membranes controlled by smart nanostructured films. J Pharm Sci 103:3958–3965

    Article  CAS  PubMed  Google Scholar 

  • Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A Appl Sci Manuf 83:98–112

    Article  CAS  Google Scholar 

  • Poonguzhali R, Basha SK, Kumari VS (2017) Synthesis and characterization of chitosan-PVP-nanocellulose composites for in-vitro wound dressing application. Int J Biol Macromol 105:111–120

    Article  CAS  PubMed  Google Scholar 

  • Pooyan P, Tannenbaum R, Garmestani H (2012) Mechanical behavior of a cellulose-reinforced scaffold in vascular tissue engineering. J Mech Behav Biomed Mater 7:50–59

    Article  CAS  PubMed  Google Scholar 

  • Pooyan P, Kim IT, Jacob KI, Tannenbaum R, Garmestani H (2013) Design of a cellulose-based nanocomposite as a potential polymeric scaffold in tissue engineering. Polym (United Kingdom) 54:2105–2114

    CAS  Google Scholar 

  • Popescu MC (2017) Structure and sorption properties of CNC reinforced PVA films. Int J Biol Macromol 101:783–790

    Article  CAS  PubMed  Google Scholar 

  • Powell LC, Khan S, Chinga-Carrasco G, Wright CJ, Hill KE, Thomas DW (2016) An investigation of Pseudomonas aeruginosa biofilm growth on novel nanocellulose fibre dressings. Carbohydr Polym 137:191–197

    Article  CAS  PubMed  Google Scholar 

  • Prince E, Alizadehgiashi M, Campbell M, Khuu N, Albulescu A, De France K, Ratkov D, Li Y, Hoare T, Kumacheva E (2018) Patterning of structurally anisotropic composite hydrogel sheets. Biomacromolecules 19:1276–1284

    Article  CAS  PubMed  Google Scholar 

  • Putra A, Kakugo A, Furukawa H, Gong JP, Osada Y (2008) Tubular bacterial cellulose gel with oriented fibrils on the curved surface. Polymer (Guildf) 49:1885–1891

    Article  CAS  Google Scholar 

  • Qiao H, Guo T, Zheng Y, Zhao L, Sun Y, Liu Y, Xie Y (2018) A novel microporous oxidized bacterial cellulose/arginine composite and its effect on behavior of fibroblast/endothelial cell. Carbohydr Polym 184:323–332

    Article  CAS  PubMed  Google Scholar 

  • Qing W, Wang Y, Wang Y, Zhao D, Liu X, Zhu J (2016) The modified nanocrystalline cellulose for hydrophobic drug delivery. Appl Surf Sci 366:404–409

    Article  CAS  Google Scholar 

  • Qiu Y, Qiu L, Cui J, Wei Q (2016) Bacterial cellulose and bacterial cellulose-vaccarin membranes for wound healing. Mater Sci Eng C 59:303–309

    Article  CAS  Google Scholar 

  • Ramani D, Sastry TP (2014) Bacterial cellulose-reinforced hydroxyapatite functionalized graphene oxide: a potential osteoinductive composite. Cellulose 21:3585–3595

    Article  CAS  Google Scholar 

  • Rambo CR, Recouvreux DOS, Carminatti CA, Pitlovanciv AK, Antônio RV, Porto LM (2008) Template assisted synthesis of porous nanofibrous cellulose membranes for tissue engineering. Mater Sci Eng C 28:549–554

    Article  CAS  Google Scholar 

  • Rånby BG (1949) Aqueous colloidal solutions of cellulose micelles. Acta Chem Scand 3:649–650

    Article  Google Scholar 

  • Rangaswamy BE, Vanitha KP (2017) Tridax procumbens leaf extracted based bacterial cellulose for wound healing. Asian J Microbiol Biotechnol 2:9–14

    Google Scholar 

  • Rao KM, Kumar A, Han SS (2017a) Poly(acrylamidoglycolic acid) nanocomposite hydrogels reinforced with cellulose nanocrystals for pH-sensitive controlled release of diclofenac sodium. Polym Test 64:175–182

    Article  CAS  Google Scholar 

  • Rao KM, Kumar A, Han SS (2017b) Polysaccharide based bionanocomposite hydrogels reinforced with cellulose nanocrystals: drug release and biocompatibility analyses. Int J Biol Macromol 101:165–171

    Article  CAS  Google Scholar 

  • Rescignano N, Fortunati E, Montesano S, Emiliani C, Kenny JM, Martino S, Armentano I (2014) PVA bio-nanocomposites: a new take-off using cellulose nanocrystals and PLGA nanoparticles. Carbohydr Polym 99:47–58

    Article  CAS  PubMed  Google Scholar 

  • Rigotti D, Duc V, Nguyen H, Cataldi A, Pegoretti A (2018) Polyvinyl alcohol reinforced crystalline nanocellulose in 3D printing application. Mater Today Commun 15:1–8

    Article  CAS  Google Scholar 

  • Rivkin A, Abitbol T, Nevo Y, Verker R, Lapidot S, Komarov A, Veldhuis SC, Zilberman G, Reches M, Cranston ED, Shoseyov O (2015) Bionanocomposite films from resilin-CBD bound to cellulose nanocrystals. Ind Biotechnol 11:44–58

    Article  CAS  Google Scholar 

  • Rodionova G, Lenes M, Eriksen Ø, Gregersen Ø (2011) Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18:127–134

    Article  CAS  Google Scholar 

  • Roemhild K, Wiegand C, Hipler U, Heinze T (2013) Novel bioactive amino-functionalized cellulose nanofibers. Macromol Rapid Commun 34:1767–1771

    Article  CAS  PubMed  Google Scholar 

  • Rogstad Nordli H, Chinga-carrasco G, Mari Rokstad A, Pukstad B (2016) Producing ultrapure wood cellulose nanofibrils and evaluating the cytotoxicity using human skin cells. Carbohydr Polym 150:65–73

    Article  CAS  Google Scholar 

  • Rose JKC, Bennett AB (1999) Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening. Trends Plant Sci 4:176–183

    Article  CAS  PubMed  Google Scholar 

  • Rouabhia M, Asselin J, Tazi N, Messaddeq Y, Levinson D, Zhang Z (2014) Production of biocompatible and antimicrobial bacterial cellulose polymers functionalized by RGDC grafting groups and gentamicin. ACS Appl Mater Interfaces 6:1439–1446

    Article  CAS  PubMed  Google Scholar 

  • Rueda L, Saralegi A, Fernández-d’Arlas B, Zhou Q, Alonso-Varona A, Berglund LA, Mondragon I, Corcuera MA, Eceiza A (2013) In situ polymerization and characterization of elastomeric polyurethane-cellulose nanocrystal nanocomposites. Cell response evaluation. Cellulose 20:1819–1828

    Article  CAS  Google Scholar 

  • Sadeghifar H, Filpponen I, Clarke SP, Brougham DF, Argyropoulos DS (2011) Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J Mater Sci 46:7344–7355

    Article  CAS  Google Scholar 

  • Saibuatong O ard, Phisalaphong M (2010) Novo aloe vera-bacterial cellulose composite film from biosynthesis. Carbohydr Polym 79:455–460

    Article  CAS  Google Scholar 

  • Saïdi L, Vilela C, Oliveira H, Silvestre AJD, Freire CSR (2017) Poly(N-methacryloyl glycine)/nanocellulose composites as pH-sensitive systems for controlled release of diclofenac. Carbohydr Polym 169:357–365

    Article  PubMed  CAS  Google Scholar 

  • Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Isogai A (2006) Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation. Colloids Surf A Physicochem Eng Asp 289:219–225

    Article  CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491

    Article  CAS  PubMed  Google Scholar 

  • Salata LA, Hatton PV, Devlin AJ, Craig GT, Brook IM (2001) In vitro and in vivo evaluation of e-PTFE and alkali-cellulose membranes for guided bone regeneration. Clin Oral Implants Res 12:62–68

    Article  CAS  PubMed  Google Scholar 

  • Salgado AJ, Oliveira JM, Martins A, Teixeira FG, Silva NA, Neves NM, Sousa N, Reis RL (2013) Tissue engineering and regenerative medicine. In: Elsevier. Elsevier Inc., London, pp 1–33

    Google Scholar 

  • Sampaio LMP, Padrão J, Faria J, Silva JP, Silva CJ, Dourado F, Zille A (2016) Laccase immobilization on bacterial nanocellulose membranes: antimicrobial, kinetic and stability properties. Carbohydr Polym 145:1–12

    Article  CAS  PubMed  Google Scholar 

  • Saska S, Barud HS, Gaspar AMM, Marchetto R, Ribeiro SJL, Messaddeq Y (2011) Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. Int J Biomater 2011:175362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saska S, Pigossi SC, Oliveira GJPL, Teixeira LN, Capela MV, Gonçalves A, de Oliveira PT, Messaddeq Y, Ribeiro SJL, Gaspar AMM, Marchetto R (2018) Biopolymer-based membranes associated with osteogenic growth peptide for guided bone regeneration. Biomed Mater 13:035009

    Article  PubMed  Google Scholar 

  • Shao W, Liu H, Liu X, Sun H, Wang S, Zhang R (2015a) pH-responsive release behavior and anti-bacterial activity of bacterial cellulose-silver nanocomposites. Int J Biol Macromol 76:209–217

    Article  CAS  PubMed  Google Scholar 

  • Shao W, Liu H, Liu X, Wang S, Wu J, Zhang R, Min H, Huang M (2015b) Development of silver sulfadiazine loaded bacterial cellulose/sodium alginate composite films with enhanced antibacterial property. Carbohydr Polym 132:351–358

    Article  CAS  PubMed  Google Scholar 

  • Shao W, Liu H, Liu X, Wang S, Zhang R (2015c) Anti-bacterial performances and biocompatibility of bacterial cellulose/graphene oxide composites. RSC Adv 5:4795–4803

    Article  CAS  Google Scholar 

  • Shao W, Liu H, Wang S, Wu J, Huang M, Min H, Liu X (2016) Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes. Carbohydr Polym 145:114–120

    Article  CAS  PubMed  Google Scholar 

  • Shi Q, Li Y, Sun J, Zhang H, Chen L, Chen B, Yang H, Wang Z (2012a) The osteogenesis of bacterial cellulose scaffold loaded with bone morphogenetic protein-2. Biomaterials 33:6644–6649

    Article  CAS  PubMed  Google Scholar 

  • Shi Q, Zhou C, Yue Y, Guo W, Wu Y, Wu Q (2012b) Mechanical properties and in vitro degradation of electrospun bio-nanocomposite mats from PLA and cellulose nanocrystals. Carbohydr Polym 90:301–308

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Zheng Y, Wang G, Lin Q, Fan J (2014) pH- and electro-response characteristics of bacterial cellulose nanofibersodium alginate hybrid hydrogels for dual controlled drug delivery. RSC Adv 4:47056–47065

    Article  CAS  Google Scholar 

  • Shpigel E, Roiz L, Goren R, Shoseyov O (1998) Bacterial cellulose-binding domain modulates in vitro elongation of different plant cells. Plant Physiol 117:1185–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siangsanoh C, Ummartyotin S, Sathirakul K, Rojanapanthu P, Treesuppharat W (2018) Fabrication and characterization of triple-responsive composite hydrogel for targeted and controlled drug delivery system. J Mol Liq 256:90–99

    Article  CAS  Google Scholar 

  • Silva NHCS, Drumond I ˆs, Almeida IF, Costa P, Rosado CF, Neto CP, Freire CSR, Silvestre AJD (2014a) Topical caffeine delivery using biocellulose membranes: a potential innovative system for cellulite treatment. Cellulose 21:665–674

    Article  CAS  Google Scholar 

  • Silva NHCS, Filipe Rodrigues A, Almeida IF, Costa PC, Rosado C, Pascoal Neto C, Silvestre AJD, Freire CSR (2014b) Bacterial cellulose membranes as transdermal delivery systems for diclofenac: in vitro dissolution and permeation studies. Carbohydr Polym 106:264–269

    Article  CAS  PubMed  Google Scholar 

  • Silva RM, Pereira FV, Mota FAP, Watanabe E, Soares SMCS, Santos MH (2016) Dental glass ionomer cement reinforced by cellulose microfibers and cellulose nanocrystals. Mater Sci Eng C 58:389–395

    Article  CAS  Google Scholar 

  • Silveira FCA, Pinto FCM, Caldas Neto S da S, Leal M de C, Cesário J, Aguiar JL de A (2016) Treatment of tympanic membrane perforation using bacterial cellulose: a randomized controlled trial. Braz J Otorhinolaryngol 82:203–208

    Article  PubMed  Google Scholar 

  • Sinclair A, Jiang L, Bajwa D, Bajwa S, Tangpong S, Wang X (2018) Cellulose nanofibers produced from various agricultural residues and their reinforcement effects in polymer nanocomposites. J Appl Polym Sci 135:9–11

    Article  CAS  Google Scholar 

  • Singla R, Soni S, Markand Kulurkar P, Kumari A, Mahesh S, Patial V, Padwad YS, Kumar Yadav S (2017a) In situ functionalized nanobiocomposites dressings of bamboo cellulose nanocrystals and silver nanoparticles for accelerated wound healing. Carbohydr Polym 155:152–162

    Article  CAS  PubMed  Google Scholar 

  • Singla R, Soni S, Padwad YS, Acharya A, Yadav SK (2017b) Sustained delivery of BSA/HSA from biocompatible plant cellulose nanocrystals for in vitro cholesterol release from endothelial cells. Int J Biol Macromol 104:748–757

    Article  CAS  PubMed  Google Scholar 

  • Singla R, Soni S, Patial V, Markand Kulurkar P, Kumari A, Mahesh S, Padwad YS, Kumar Yadav S (2017c) In vivo diabetic wound healing potential of nanobiocomposites containing bamboo cellulose nanocrystals impregnated with silver nanoparticles. Int J Biol Macromol 105:45–55

    Article  CAS  PubMed  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432

    Article  CAS  PubMed  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26:402–411

    Article  CAS  PubMed  Google Scholar 

  • Siqueira G, Kokkinis D, Libanori R, Hausmann MK, Gladman AS, Neels A, Tingaut P, Zimmermann T, Lewis JA, Studart AR (2017) Cellulose nanocrystal inks for 3D printing of textured cellular architectures. Adv Funct Mater 27(12):1604619

    Article  CAS  Google Scholar 

  • Song K, Xu H, Xie K, Yang Y (2017) Keratin-based biocomposites reinforced and cross-linked with dual-functional cellulose nanocrystals. ACS Sustain Chem Eng 5:5669–5678

    Article  CAS  Google Scholar 

  • Song J, Chen C, Zhu S, Zhu M, Dai J, Ray U, Li Y, Kuang Y, Li Y, Quispe N, Yao Y, Gong A, Leiste UH, Bruck HA, Zhu JY, Vellore A, Li H, Minus ML, Jia Z, Martini A, Li T, Hu L (2018) Processing bulk natural wood into a high-performance structural material. Nature 554:224–228

    Article  CAS  PubMed  Google Scholar 

  • Souza CMCO, Mesquita LAF, Souza D, Irioda AC, Francisco JC, Souza CF, Guarita-Souza LC, Sierakowski M, Carvalho KAT (2014) Regeneration of skin tissue promoted by mesenchymal stem cells seeded in nanostructured membrane. Transplant Proc 46:1882–1886

    Article  CAS  PubMed  Google Scholar 

  • Stevens MM (2005) Exploring and engineering the cell surface interface. Science (80- ) 310:1135–1138

    Article  CAS  Google Scholar 

  • Stevens B, Yang Y, Mohandas A, Stucker B, Nguyen KT (2008) A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues. J Biomed Mater Res Part B Appl Biomater 85B:573–582

    Article  CAS  Google Scholar 

  • Stoica-Guzun A, Stroescu M, Tache F, Zaharescu T, Grosu E (2007) Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems. Nucl Instruments Methods Phys Res Sect B Beam Interact With Mater Atoms 265:434–438

    Article  CAS  Google Scholar 

  • Stumpf TR, Pértile RAN, Rambo CR, Porto LM (2013) Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes. Mater Sci Eng C 33:4739–4745

    Article  CAS  Google Scholar 

  • Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061

    Article  PubMed  CAS  Google Scholar 

  • Sukul M, Min Y, Lee S, Lee B (2015) Osteogenic potential of simvastatin loaded gelatin-nanofibrillar cellulose- b tricalcium phosphate hydrogel scaffold in critical-sized rat calvarial defect. Eur Polym J 73:308–323

    Article  CAS  Google Scholar 

  • Sulaeva I, Henniges U, Rosenau T, Potthast A (2015) Bacterial cellulose as a material for wound treatment: properties and modifications: a review. Biotechnol Adv 33:1547–1571

    Article  CAS  PubMed  Google Scholar 

  • Sultan S, Mathew A (2018) 3D printed scaffolds with gradient porosity based on cellulose nanocrystal hydrogel. Nanoscale 4421–4431

    Article  CAS  PubMed  Google Scholar 

  • Sun B, Hou Q, Liu Z, Ni Y (2015) Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive. Cellulose 22:1135–1146

    Article  CAS  Google Scholar 

  • Sun F, Nordli HR, Pukstad B, Gamstedt EK, Chinga-carrasco G (2017) Mechanical characteristics of nanocellulose-PEG bionanocomposite wound dressings in wet conditions. J Mech Behav Biomed Mater 69:377–384

    Article  CAS  PubMed  Google Scholar 

  • Sunasee R, Hemraz U (2018) Synthetic strategies for the fabrication of cationic surface-modified cellulose nanocrystals. Fibers 6:15

    Article  CAS  Google Scholar 

  • Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431

    Article  CAS  PubMed  Google Scholar 

  • Sydney Gladman A, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA (2016) Biomimetic 4D printing. Nat Mater 15:413–418

    Article  CAS  PubMed  Google Scholar 

  • Tabaii MJ, Emtiazi G (2018) Transparent nontoxic antibacterial wound dressing based on silver nano particle/bacterial cellulose nano composite synthesized in the presence of tripolyphosphate. J Drug Deliv Sci Technol 44:244–253

    Article  CAS  Google Scholar 

  • Taheri A, Mohammadi M (2015) The use of cellulose nanocrystals for potential application in topical delivery of hydroquinone. Chem Biol Drug Des 86:102–106

    Article  PubMed  CAS  Google Scholar 

  • Tang J, Bao L, Li X, Chen L, Hong FF (2015a) Potential of PVA-doped bacterial nano-cellulose tubular composites for artificial blood vessels. J Mater Chem B 3:8537–8547

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Song Y, Tanvir S, Anderson WA, Berry RM, Tam KC (2015b) Polyrhodanine coated cellulose nanocrystals: a sustainable antimicrobial agent. ACS Sustain Chem Eng 3:1801–1809

    Article  CAS  Google Scholar 

  • Tang Y, Shen X, Zhang J, Guo D, Kong F, Zhang N (2015c) Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication. Carbohydr Polym 125:360–366

    Article  CAS  PubMed  Google Scholar 

  • Tanpichai S, Oksman K (2018) Crosslinked poly(vinyl alcohol) composite films with cellulose nanocrystals: mechanical and thermal properties. J Appl Polym Sci 135:1–11

    Article  CAS  Google Scholar 

  • Taokaew S, Phisalaphong M, Newby BZ (2015) Modification of bacterial cellulose with organosilanes to improve attachment and spreading of human fibroblasts. Cellulose 22:2311–2324

    Article  CAS  PubMed  Google Scholar 

  • Tazi N, Zhang Z, Messaddeq Y, Almeida-Lopes L, Zanardi LM, Levinson D, Rouabhia M (2012) Hydroxyapatite bioactivated bacterial cellulose promotes osteoblast growth and the formation of bone nodules. AMB Express 2:61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ten E, Turtle J, Bahr D, Jiang L, Wolcott M (2010) Thermal and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Polymer (Guildf) 51:2652–2660

    Article  CAS  Google Scholar 

  • Tong WY, bin Abdullah AYK, binti Rozman NAS, bin Wahid MIA, Hossain MS, Ring LC, Lazim Y, Tan W-N (2018) Antimicrobial wound dressing film utilizing cellulose nanocrystal as drug delivery system for curcumin. Cellulose 25:631–638

    Article  CAS  Google Scholar 

  • Treesuppharat W, Rojanapanthu P, Siangsanoh C, Manuspiya H, Ummartyotin S (2017) Synthesis and characterization of bacterial cellulose and gelatin-based hydrogel composites for drug-delivery systems. Biotechnol Rep 15:84–91

    Article  CAS  Google Scholar 

  • Trovatti E, Silva NHCS, Duarte IF, Rosado CF, Almeida IF, Costa P, Freire CSR, Silvestre AJD, Neto CP (2011) Biocellulose membranes as supports for dermal release of lidocaine. Biomacromolecules 12:4162–4168

    Article  CAS  PubMed  Google Scholar 

  • Trovatti E, Freire CSR, Pinto PC, Almeida IF, Costa P, Silvestre AJD, Pascoal Neto C, Rosado C (2012) Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: in vitro diffusion studies. Int J Pharm 435:83–87

    Article  CAS  PubMed  Google Scholar 

  • Tsai Y, Yang Y, Ho Y, Tsai M, Mi F-L (2018) Drug release and antioxidant/antibacterial activities of silymarin-zein nanoparticle/bacterial cellulose nanofiber composite films. Carbohydr Polym 180:286–296

    Article  CAS  PubMed  Google Scholar 

  • Tummala GK, Joffre T, Lopes VR, Liszka A, Buznyk O, Ferraz N, Persson C, Griffith M, Mihranyan A (2016) Hyperelastic nanocellulose-reinforced hydrogel of high water content for ophthalmic applications. ACS Biomater Sci Eng 2:2072–2079

    Article  CAS  PubMed  Google Scholar 

  • Turbak A, Snyder F, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. Appl Polym 37:815–827

    CAS  Google Scholar 

  • Türkoglu N (2014) Development of biodegradable antibacterial cellulose based hydrogel membranes for wound healing. Int J Biol Macromol 67:22–27

    Article  CAS  Google Scholar 

  • Ul-Islam M, Shah N, Ha JH, Park JK (2011) Effect of chitosan penetration on physico-chemical and mechanical properties of bacterial cellulose. Korean J Chem Eng 28:1736–1743

    Article  CAS  Google Scholar 

  • Ul-islam M, Khan T, Khattak WA, Park JK (2013) Bacterial cellulose-MMTs nanoreinforced composite films: novel wound dressing material with antibacterial properties. Cellulose 20:589–596

    Article  CAS  Google Scholar 

  • Ullah H, Badshah M, Makila E, Salonen J, Shahbazi M, Santos HA, Khan T (2017) Fabrication, characterization and evaluation of bacterial cellulose-based capsule shells for oral drug delivery. Cellulose 24:1445–1454

    Article  CAS  Google Scholar 

  • UPM Biochemicals (2018) Growdex the natural choice for cell culture. http://www.upmbiochemicals.com/growdex/Pages/Default.aspx

  • Valo H, Kovalainen M, Laaksonen P, Häkkinen M, Auriola S, Peltonen L, Linder M, Järvinen K, Hirvonen J, Laaksonen T (2011) Immobilization of protein-coated drug nanoparticles in nanofibrillar cellulose matrices – enhanced stability and release. J Control Release 156:390–397

    Article  CAS  PubMed  Google Scholar 

  • Valo H, Arola S, Laaksonen P, Torkkeli M, Peltonen L, Linder MB, Serimaa R, Kuga S, Hirvonen J, Laaksonen T (2013) Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur J Pharm Sci 50:69–77

    Article  CAS  PubMed  Google Scholar 

  • Villanova JCO, Ayres E, Carvalho SM, Patrício PS, Pereira FV, Oréfice RL (2011) Pharmaceutical acrylic beads obtained by suspension polymerization containing cellulose nanowhiskers as excipient for drug delivery. Eur J Pharm Sci 42:406–415

    Article  CAS  PubMed  Google Scholar 

  • Villares A, Moreau C, Dammak A, Capron I, Cathala B (2015) Kinetic aspects of the adsorption of xyloglucan onto cellulose nanocrystals. Soft Matter 11:6472–6481

    Article  CAS  PubMed  Google Scholar 

  • Voicu G, Jinga S, Drosu B, Busuioc C (2017) Improvement of silicate cement properties with bacterial cellulose powder addition for applications in dentistry. Carbohydr Polym 174:160–170

    Article  CAS  PubMed  Google Scholar 

  • Vollick B, Kuo P-Y, Alizadehgiashi M, Yan N, Kumacheva E (2017) From structure to properties of composite films derived from cellulose nanocrystals. ACS Omega 2:5928–5934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volova TG, Shumilova AA, Shidlovskiy IP, Nikolaeva ED, Sukovatiy AG, Vasiliev AD, Shishatskaya EI (2018) Antibacterial properties of films of cellulose composites with silver nanoparticles and antibiotics. Polym Test 65:54–68

    Article  CAS  Google Scholar 

  • Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795

    Article  PubMed  CAS  Google Scholar 

  • Wan YZ, Hong L, Jia SR, Huang Y, Zhu Y, Wang YL, Jiang HJ (2006) Synthesis and characterization of hydroxyapatite-bacterial cellulose nanocomposites. Compos Sci Technol 66:1825–1832

    Article  CAS  Google Scholar 

  • Wan Y, Gao C, Han M, Liang H, Ren K, Wang Y, Luo H (2011) Preparation and characterization of bacterial cellulose/heparin hybrid nanofiber for potential vascular tissue engineering scaffolds. Polym Adv Technol 22:2643–2648

    Article  CAS  Google Scholar 

  • Wang Y, Chen L (2011) Impacts of nanowhisker on formation kinetics and properties of all-cellulose composite gels. Carbohydr Polym 83:1937–1946

    Article  CAS  Google Scholar 

  • Wang Y, Chen L (2014) Cellulose nanowhiskers and fiber alignment greatly improve mechanical properties of electrospun prolamin protein fibers. ACS Appl Mater Interfaces 6:1709–1718

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Liu Y, Li M, Huang H, Xu HM, Hong RJ, Shen H (2010a) Multifunctional TiO2nanowires-modified nanoparticles bilayer film for 3D dye-sensitized solar cells. Optoelectron Adv Mater Rapid Commun 4:1166–1169

    CAS  Google Scholar 

  • Wang J, Gao C, Zhang Y, Wan Y (2010b) Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mater Sci Eng C 30:214–218

    Article  CAS  Google Scholar 

  • Wang Y, Chang C, Zhang L (2010c) Effects of freezing/thawing cycles and cellulose nanowhiskers on structure and properties of biocompatible starch/PVA sponges. Macromol Mater Eng 295:137–145

    Article  CAS  Google Scholar 

  • Wang J, Wan YZ, Luo HL, Gao C, Huang Y (2012) Immobilization of gelatin on bacterial cellulose nanofibers surface via crosslinking technique. Mater Sci Eng C 32:536–541

    Article  CAS  Google Scholar 

  • Wang Q, Zhu JY, Considine JM (2013) Strong and optically transparent films prepared using cellulosic solid residue recovered from cellulose nanocrystals production waste stream. ACS Appl Mater Interfaces 5:2527–2534

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Huang H, Jia M, Jin S, Zhao W, Cha R (2015a) Formulation and evaluation of nanocrystalline cellulose as a potential disintegrant. Carbohydr Polym 130:275–279

    Article  CAS  PubMed  Google Scholar 

  • Wang H, He J, Zhang M, Tam KC, Ni P (2015b) A new pathway towards polymer modified cellulose nanocrystals via a “grafting onto” process for drug delivery. Polym Chem 6:4206–4209

    Article  CAS  Google Scholar 

  • Wang B, Lv X, Chen S, Li Z, Yao J, Peng X, Feng C, Xu Y, Wang H (2017) Bacterial cellulose/gelatin scaffold loaded with VEGF-silk fibroin nanoparticles for improving angiogenesis in tissue regeneration. Cellulose 24:5013–5024

    Article  CAS  Google Scholar 

  • Wang J, Chiappone A, Roppolo I, Shao F, Fantino E, Lorusso M, Rentsch D, Dietliker K, Pirri CF, Grützmacher H (2018a) All-in-one cellulose nanocrystals for 3D printing of nanocomposite hydrogels. Angew Chem Int Ed 57:2353–2356

    Article  CAS  Google Scholar 

  • Wang X, Xie Y, Ge H, Chen L, Wang J, Zhang S, Guo Y, Li Z, Feng X (2018b) Physical properties and antioxidant capacity of chitosan/epigallocatechin-3- gallate films reinforced with nano-bacterial cellulose. Carbohydr Polym 179:207–220

    Article  CAS  PubMed  Google Scholar 

  • Wanna D, Alam C, Toivola DM, Alam P (2013) Bacterial cellulose–kaolin nanocomposites for application as biomedical wound healing materials. Adv Nat Sci Nanosci Nanotechnol 4:045002

    Article  CAS  Google Scholar 

  • Watanabe K, Eto Y, Takano S, Nakamori S, Shibai H, Yamanaka S (1993) A new bacterial cellulose substrate for mammalian cell culture – a new bacterial cellulose substrate. Cytotechnology 13:107–114

    Article  CAS  PubMed  Google Scholar 

  • Wei B, Yang G, Hong F (2011) Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr Polym 84:533–538

    Article  CAS  Google Scholar 

  • Wiegand C, Elsner P, Hipler UC, Klemm D (2006) Protease and ROS activities influenced by a composite of bacterial cellulose and collagen type I in vitro. Cellulose 13:689–696

    Article  CAS  Google Scholar 

  • Wiegand C, Moritz S, Hessler N, Kralisch D, Wesarg F, Müller FA, Fischer D, Hipler U (2015) Antimicrobial functionalization of bacterial nanocellulose by loading with polihexanide and povidone-iodine. J Mater Sci Mater Med 26:245

    Article  PubMed  CAS  Google Scholar 

  • Wijaya CJ, Saputra SN, Soetaredjo FE, Putro JN, Lin CX, Kurniawan A, Ju Y, Ismadji S (2017) Cellulose nanocrystals from passion fruit peels waste as antibiotic drug carrier. Carbohydr Polym 175:370–376

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Zhou H, Sun H-J, Zhao Y, Yang X, Cheng SZD, Yang G (2013) Thermoresponsive bacterial cellulose whisker/poly(NIPAM- co -BMA) nanogel complexes: synthesis, characterization, and biological evaluation. Biomacromolecules 14:1078–1084

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Zheng Y, Song W, Luan J, Wen X, Wu Z, Chen X, Wang Q, Guo S (2014a) In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr Polym 102:762–771

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Zheng Y, Wen X, Lin Q, Chen X, Wu Z (2014b) Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo. Biomed Mater 9:1–12

    Article  CAS  Google Scholar 

  • Wu J, Zheng Y, Yang Z, Lin Q, Qiao K, Chen X, Peng Y (2014c) Influence of dialdehyde bacterial cellulose with the nonlinear elasticity and topology structure of ECM on cell adhesion and proliferation. RSC Adv 4:3998–4009

    Article  CAS  Google Scholar 

  • Wu CN, Fuh SC, Lin SP, Lin YY, Chen HY, Liu JM, Cheng KC (2018) TEMPO-Oxidized bacterial cellulose pellicle with silver nanoparticles for wound dressing. Biomacromolecules 19:544–554

    Article  CAS  PubMed  Google Scholar 

  • Xiang C, Taylor AG, Hinestroza JP, Frey MW (2013) Controlled release of nonionic compounds from poly(lactic acid)/cellulose nanocrystal nanocomposite fibers. J Appl Polym Sci 127:79–86

    Article  CAS  Google Scholar 

  • Xiong G, Luo H, Zhu Y, Raman S, Wan Y (2014) Creation of macropores in three-dimensional bacterial cellulose scaffold for potential cancer cell culture. Carbohydr Polym 114:553–557

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Liu S, Chen G, Chen T, Song T, Wu J, Shi C, He M, Tian J (2018) Engineering biocompatible hydrogels from bicomponent natural nanofibers for anticancer drug delivery. Agric Food Chem 66:935–942

    Article  CAS  Google Scholar 

  • Yadav V, Paniliatis BJ, Shi H, Lee K, Cebe P, Kaplan DL (2010) Novel in vivo -degradable cellulose-chitin copolymer from metabolically engineered Gluconacetobacter xylinus. Appl Environ Microbiol 76:6257–6265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav V, Sun L, Panilaitis B, Kaplan DL (2015) In vitro chondrogenesis with lysozyme susceptible bacterial cellulose as a scaffold. J Tissue Eng Regen Med 9:E276–E288

    Article  CAS  PubMed  Google Scholar 

  • Yan H, Chen X, Feng M, Shi Z, Zhang D, Lin Q (2017) Layer-by-layer assembly of 3D alginate-chitosan-gelatin composite scaffold incorporating bacterial cellulose nanocrystals for bone tissue engineering. Mater Lett 209:492–496

    Article  CAS  Google Scholar 

  • Yan H, Huang D, Chen X, Liu H, Feng Y, Zhao Z, Dai Z, Zhang X, Lin Q (2018) A novel and homogeneous scaffold material: preparation and evaluation of alginate/bacterial cellulose nanocrystals/collagen composite hydrogel for tissue engineering. Polym Bull 75:985–1000

    Article  CAS  Google Scholar 

  • Yang X, Berglund LA (2018) Water-based approach to high-strength all-cellulose material with optical transparency. ACS Sustain Chem Eng 6:501–510

    Article  CAS  Google Scholar 

  • Yang J, Han C-R, Duan J-F, Ma M-G, Zhang X-M, Xu F, Sun R-C, Xie X-M (2012) Studies on the properties and formation mechanism of flexible nanocomposite hydrogels from cellulose nanocrystals and poly(acrylic acid). J Mater Chem 22:22467–22480

    Article  CAS  Google Scholar 

  • Yang J, Han CR, Duan JF, Xu F, Sun RC (2013a) Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels. ACS Appl Mater Interfaces 5:3199–3207

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Bakaic E, Hoare T, Cranston ED (2013b) Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: morphology, rheology, degradation, and cytotoxicity. Biomacromolecules 14:4447–4455

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Lv X, Chen S, Li Z, Feng C, Wang H, Xu Y (2014) In situ fabrication of a microporous bacterial cellulose/potato starch composite scaffold with enhanced cell compatibility. Cellulose 21:1823–1835

    Article  CAS  Google Scholar 

  • Yang J, Wang L, Zhang W, Sun Z, Li Y, Yang M, Zeng D, Peng B, Zheng W, Jiang X, Yang G (2018) Reverse reconstruction and bioprinting of bacterial cellulose-based functional total intervertebral disc for therapeutic implantation. Small 14:1702582

    Article  CAS  Google Scholar 

  • Yano H (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Sustain Humanosph 1:11

    Google Scholar 

  • Ye J, Si J, Cui Z, Wang Q, Peng K, Chen W, Peng X, Chen SC (2017) Surface modification of electrospun TPU nanofiber scaffold with CNF particles by ultrasound-assisted technique for tissue engineering. Macromol Mater Eng 302:1700277

    Article  CAS  Google Scholar 

  • Ye S, Jiang L, Wu J, Su C, Huang C, Liu X, Shao W (2018) Flexible amoxicillin grafted bacterial cellulose sponges for wound dressing: in vitro and in vivo evaluation. ACS Appl Mater Interfaces 10:5862–5870

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Tian X, Jiang X, Wang H, Gao W (2016) Modification of cellulose nanocrystal via SI-ATRP of styrene and the mechanism of its reinforcement of polymethylmethacrylate. Carbohydr Polym 142:206–212

    Article  CAS  PubMed  Google Scholar 

  • Yoshino A, Tabuchi M, Uo M, Tatsumi H, Hideshima K, Kondo S, Sekine J (2013) Applicability of bacterial cellulose as an alternative to paper points in endodontic treatment. Acta Biomater 9:6116–6122

    Article  CAS  PubMed  Google Scholar 

  • You J, Cao J, Zhao Y, Zhang L, Zhou J, Chen Y (2016) Improved mechanical properties and sustained release behavior of cationic cellulose nanocrystals reinforeced cationic cellulose injectable hydrogels. Biomacromolecules 17:2839–2848

    Article  CAS  PubMed  Google Scholar 

  • Young R, Rowell R (1986) Cellulose: structure, modification, and hydrolysis. Wiley, New York

    Google Scholar 

  • Yu HY, Chen GY, Wang YB, Yao JM (2015) A facile one-pot route for preparing cellulose nanocrystal/zinc oxide nanohybrids with high antibacterial and photocatalytic activity. Cellulose 22:261–273

    Article  CAS  Google Scholar 

  • Yu H, Wang C, Abdalkarim SYH (2017) Cellulose nanocrystals/polyethylene glycol as bifunctional reinforcing/compatibilizing agents in poly (lactic acid ) nanofibers for controlling long-term in vitro drug release. Cellulose 24:4461–4477

    Article  CAS  Google Scholar 

  • Yuan Lu ASO, Levent Tekinalp H, Eberle CC, Peter W, Kumar Naskar A (2003) Nanocellulose in polymer composites and biomedical applications. TAPPI J 13:10–12

    Google Scholar 

  • Zaborowska M, Bodin A, Bäckdahl H, Popp J, Goldstein A, Gatenholm P (2010) Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater 6:2540–2547

    Article  CAS  PubMed  Google Scholar 

  • Zang S, Zhuo Q, Chang X, Qiu G, Wu Z, Yang G (2014) Study of osteogenic differentiation of human adipose-derived stem cells (HASCs) on bacterial cellulose. Carbohydr Polym 104:158–165

    Article  CAS  PubMed  Google Scholar 

  • Zang S, Zhang R, Chen H, Lu Y, Zhou J, Chang X, Qiu G, Wu Z, Yang G (2015) Investigation on artificial blood vessels prepared from bacterial cellulose. Mater Sci Eng C 46:111–117

    Article  CAS  Google Scholar 

  • Zhang X, Huang J, Chang PR, Li J, Chen Y, Wang D, Yu J, Chen J (2010) Structure and properties of polysaccharide nanocrystal-doped supramolecular hydrogels based on Cyclodextrin inclusion. Polymer (Guildf) 51:4398–4407

    Article  CAS  Google Scholar 

  • Zhang J, Chang P, Zhang C, Xiong G, Luo H, Zhu Y, Ren K, Yao F, Wan Y (2015) Immobilization of lecithin on bacterial cellulose nanofibers for improved biological functions. React Funct Polym 91–92:100–107

    Article  CAS  Google Scholar 

  • Zhang F, Wu W, Zhang X, Meng X, Tong G, Deng Y (2016) Temperature-sensitive poly-NIPAm modified cellulose nanofibril cryogel microspheres for controlled drug release. Cellulose 23:415–425

    Article  CAS  Google Scholar 

  • Zhang H, Wang J, Wang K, Xu L (2018) A bilayered PLGA/multiwall carbon nanotubes/bacterial cellulose composite membrane for tissue regeneration of maxillary canine periodontal bone defects. Mater Lett 212:118–121

    Article  CAS  Google Scholar 

  • Zhao J, Hu L, Gong N, Tang Q, Du L, Chen L (2015a) The effects of macrophage-stimulating protein on the migration, proliferation, and collagen synthesis of skin fibroblasts in vitro and in vivo. Tissue Eng Part A 21:982–991

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Lu C, He X, Zhang X, Zhang W, Zhang X (2015b) Polyethylenimine-grafted cellulose nanofibril aerogels as versatile vehicles for drug delivery. ACS Appl Mater Interfaces 7:2607–2615

    Article  CAS  PubMed  Google Scholar 

  • Zhijiang C, Guang Y (2011) Bacterial cellulose/collagen composite: chatacterization and first evaluation of cytocomptability. J Appl Polym Sci 120:2938–2944

    Article  CAS  Google Scholar 

  • Zhijiang C, Chengwei H, Guang Y (2012) Poly(3-hydroxubutyrate-co-4-hydroxubutyrate)/bacterial cellulose composite porous scaffold: preparation, characterization and biocompatibility evaluation. Carbohydr Polym 87:1073–1080

    Article  CAS  Google Scholar 

  • Zhou C, Chu R, Wu R, Wu Q (2011) Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromolecules 12:2617–2625

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Fuentes-Hernandez C, Shim J, Meyer J, Giordano AJ, Li H, Winget P, Papadopoulos T, Cheun H, Kim J, Fenoll M, Dindar A, Haske W, Najafabadi E, Khan TM, Sojoudi H, Barlow S, Graham S, Brédas JL, Marder SR, Kahn A, Kippelen B (2012) A universal method to produce low-work function electrodes for organic electronics. Science 336:327–332

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Shi Q, Guo W, Terrell L, Qureshi AT, Hayes DJ, Wu Q (2013a) Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl Mater Interfaces 5:3847–3854

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Fuentes-Hernandez C, Khan TM, Liu JC, Hsu J, Shim JW, Dindar A, Youngblood JP, Moon RJ, Kippelen B (2013b) Recyclable organic solar cells on cellulose nanocrystal substrates. Sci Rep 3:24–26

    Google Scholar 

  • Zhou L, He H, Li MC, Huang S, Mei C, Wu Q (2018) Grafting polycaprolactone diol onto cellulose nanocrystals via click chemistry: enhancing thermal stability and hydrophobic property. Carbohydr Polym 189:331–341

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Li F, Zhou X, Lin L, Zhang T (2014) Kombucha-synthesized bacterial cellulose: preparation, characterization, and biocompatibility evaluation. J Biomed Mater Res Part A 102A:1548–1557

    Article  CAS  Google Scholar 

  • Zhu C, Liu F, Qian W, Wang Y, You Q, Zhang T, Li F (2015) Esophageal replacement by hydroxylated bacterial cellulose patch in a rabbit model. Turk J Med Sci 45:762–770

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Teng J, Liu X, Lan Y, Guo R (2018) Preparation and characterization of gentamycin sulfate-impregnated gelatin microspheres/collagen–cellulose/nanocrystal scaffolds. Polym Bull 75:77–91

    Article  CAS  Google Scholar 

  • Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761

    Article  CAS  Google Scholar 

  • Zoppe JO, Peresin MS, Habibi Y, Venditti RA, Rojas OJ (2009) Reinforcing poly(ε-caprolactone) nanofibers with cellulose nanocrystals. ACS Appl Mater Interfaces 1:1996–2004

    Article  CAS  PubMed  Google Scholar 

  • Zubik K, Singhsa P, Wang Y, Manuspiya H, Narain R (2017) Thermo-responsive poly(n-isopropylacrylamide)- cellulose nanocrystals hybrid hydrogels for wound dressing. Polymers (Basel) 9:119

    Article  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oded Shoseyov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shoseyov, O., Kam, D., Ben Shalom, T., Shtein, Z., Vinkler, S., Posen, Y. (2019). Nanocellulose Composite Biomaterials in Industry and Medicine. In: Cohen, E., Merzendorfer, H. (eds) Extracellular Sugar-Based Biopolymers Matrices. Biologically-Inspired Systems, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-030-12919-4_17

Download citation

Publish with us

Policies and ethics