Skip to main content

A New Hypothesis on the Anisotropic Reynolds Stress Tensor

  • Chapter
  • First Online:
A New Hypothesis on the Anisotropic Reynolds Stress Tensor for Turbulent Flows

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 120))

  • 788 Accesses

Abstract

In this chapter, a new hypothesis on the anisotropic Reynolds stress tensor has been proposed which is relying on the unification of the generalised Boussinesq hypothesis (1.113) (deformation theory) and the fully Galilean invariant three-dimensional anisotropic similarity hypothesis (4.121) of turbulent velocity fluctuations (similarity theory). The anisotropic modification to the generalised Boussinesq hypothesis (1.113) is in the centre of research interest nowadays [45], however, the hybridisation of the generalised version of the Boussinesq hypothesis [4] and the recently developed anisotropic similarity theory of turbulent velocity fluctuations [8, 9] is still missing from the literature. In other words, the new hypothesis proposed here is an anisotropic modification to the generalised Boussinesq hypothesis (1.113) based on the fully Galilean invariant version of the three-dimensional anisotropic similarity theory of turbulent velocity fluctuations—which is discussed in Chap. 4—in conjunction with the mathematical description of the Reynolds stress tensor (1.54). In addition to this, a possible anisotropic hybrid k-\(\omega \) SST/Stochastic Turbulence Model (STM) closure approach has also been proposed related to the new hypothesis on the anisotropic Reynolds stress tensor in this chapter. Computational engineering simulations is the subject of the second volume of this book.

A person who never made a mistake never tried anything new

—Albert Einstein

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antonia RA, Djenidi L, Spalart PR (1994) Anisotropy of the dissipation tensor in a turbulent boundary layer. Phys Fluids 6(7):2475–2479

    Article  Google Scholar 

  2. Bakosi J, Ristorcelli JR (2010) Probability density function method for variable-density pressure-gradient-driven turbulence and mixing. Technical report, Los Alamos National Laboratory (LANL)

    Google Scholar 

  3. Bakosi J, Ristorcelli JR (2011) Probability density function method for variable-density pressure-gradient-driven turbulence and mixing. In: 49th AIAA aerospace sciences meeting, Orlando, Florida, pp 1–15

    Google Scholar 

  4. Boussinesq J (1877) Théorie de l’Ecoulement tourbillant. Mem Présentés par Divers Savants Acad Sci Inst Fr 23:46–50

    Google Scholar 

  5. Bradshaw P (1967) The turbulence structure of equilibrium boundary layers. J Fluid Mech 29(Part 4):625–645

    Article  Google Scholar 

  6. Craft TJ, Launder BE, Suga K (1996) Development and application of a cubic eddy-viscosity model of turbulence. Int J Heat Fluid Flow 17:108–115

    Article  Google Scholar 

  7. Craft TJ, Launder BE, Suga K (1997) Prediction of turbulent transitional phenomena with a nonlinear eddy-viscosity model. Int J Heat Fluid Flow 18:15–28

    Article  Google Scholar 

  8. Czibere T (2001) Three dimensional stochastic model of turbulence. J Comput Appl Mech 2(5):7–20

    MathSciNet  MATH  Google Scholar 

  9. Czibere T (2006) Calculating turbulent flows based on a stochastic model. J Comput Appl Mech 7(2):155–188

    MathSciNet  MATH  Google Scholar 

  10. Czibere T, Janiga G (2000) Computation of laminar-turbulent transition in pipe flow. In: microCAD’2000, international computer science conference, University of Miskolc, Miskolc, Hungary, Section M, pp 45–50

    Google Scholar 

  11. Czibere T, Kalmár L (2003) Calculation of flow between two coaxial rotating cylinders. In: Conference on modelling fluid flow (CMFF’2003). The 12th international conference on fluid flow technologies, Budapest, Hungary, pp 551–558

    Google Scholar 

  12. Czibere T, Janiga G, Dombi K (1999) Comparing the computed velocity distributions based on two different algebraic turbulence models with experimental results. In: Second international conference of Ph.D. students, section proceedings, University of Miskolc, Miskolc, Hungary, pp 29–38

    Google Scholar 

  13. Czibere T, Janiga G, Dombi K (1999) Turbulent flow through circular annuli. In: microCAD’1999, international computer science conference, University of Miskolc, Miskolc, Hungary, Section M, pp 43–48

    Google Scholar 

  14. Czibere T, Janiga G, Szabó S, Kecke HJ, Praetor R (1999) Vergleich von mit unterschiedlichen Turbulenz-modellen berechneten Geschwindigkeitsprofilen. In: microCAD’1999, international computer science conference, University of Miskolc, Miskolc, Hungary, Section M, pp 71–74

    Google Scholar 

  15. Czibere T, Szabó S, Juhász A, Farkas A, Janiga G (1999) Measuring turbulent pipe flow. In: microCAD’1999, international computer science conference, University of Miskolc, Miskolc, Hungary, Section M, pp 75–79

    Google Scholar 

  16. Czibere T, Szabó S, Farkas A, Praetor R, Janiga G (2001) Experimental and theoretical analysis of a coaxial cylindrical channel flow. In: microCAD’2001, international computer science conference, University of Miskolc, Miskolc, Hungary, Section N, pp 25–32

    Google Scholar 

  17. Janiga G (2002) Computation of two-dimensional turbulent shear flows in straight and curved channels (in Hungarian). PhD thesis, University of Miskolc, Faculty of Mechanical Engineering and Informatics, István Sályi Ph.D. School of Engineering Sciences, Department of Fluid and Heat Engineering, H-3515 Miskolc-Egyetemváros, Miskolc, Hungary, pp 1–77

    Google Scholar 

  18. Janiga G (2003a) Computation of turbulent flow in an S-shaped channel. J Comput Appl Mech 4(2):147–158

    MATH  Google Scholar 

  19. Janiga G (2003) Implementation of a stochastic turbulence model. In: FLUENT, conference on modelling fluid flow (CMFF’2003). The 12th international conference on fluid flow technologies, Budapest, Hungary, Presentation

    Google Scholar 

  20. Janiga G, Szabó S, Farkas A, Kecke H, Praetor R, Wunderlich B (2001) Untersuchung der turbulenten ebenen Strömung in einem gekrümmten Kanal. In: microCAD’2001, international computer science conference, University of Miskolc, Miskolc, Hungary, Section N, pp 33–40

    Google Scholar 

  21. Janiga G, Szabó S, Farkas A, Szabó A (2001) Development of a measuring device and probes for measuring turbulent velocity profiles. In: Proceedings of third conference on mechanical engineering, Budapest, Springer Hungarica, pp 1–5

    Google Scholar 

  22. Jones WP, Launder BE (1973) The calculation of low-Reynolds-number-phenomena with a two-equation model of turbulence. Int J Heat Mass Transf 16:1119–1130

    Article  Google Scholar 

  23. Kalmár L (2010) Numerical investigation of fully-developed turbulent flows in two-dimensional channel by stochastic turbulent model. In: 3rd WSEAS international conference on engineering mechanics, structures, engineering geology (EMESEG’10). Latest trends on engineering mechanics, structures, engineering geology, pp 331–336. ISBN: 978-960-474-203-5

    Google Scholar 

  24. Kalmár L, Czibere T, Janiga G (2008) Investigation of the model parameters of a stochastic two-equation turbulence model. In: microCAD’2008, International computer science conference, University of Miskolc, Miskolc, Hungary, Section E, pp 27–36

    Google Scholar 

  25. von Kármán T (1930) Mechanische Ähnlichkeit und Turbulenz. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen Mathematisch-Physikalische Klasse pp 58–76

    Google Scholar 

  26. von Kármán T (1930) Mechanische Ähnlichkeit und Turbulenz. In: Proceedings of the third international congress of applied mechanics, P.A. Norstedt & Söner, Stockholm

    Google Scholar 

  27. von Kármán T (1931) Mechanical similitude and turbulence. National Advisory Committee for Aeronautics (NACA) Technical Memorandum No 611, Washington, USA; English Translation by Vanier J, pp 1–21

    Google Scholar 

  28. von Kármán T (1956) Mechanische Ähnlichkeit und Turbulenz. Collected works of Theodore von Kármán. Volume II, 1914–1932, pp 322–336. Butterworths Scientific Publications, London

    Google Scholar 

  29. von Kármán T (1956) Mechanische Ähnlichkeit und Turbulenz. Collected Works of Theodore von Kármán. Volume II, 1914–1932, pp 337–346. Butterworths Scientific Publications, London

    Google Scholar 

  30. Könözsy L (2003) A new mesh generation method for meridional section of turbomachinery. In: Proceedings of the international conference of water service science (ICWSS-2003), Brno-Ubislav, Czech Republic, pp 49–56

    Google Scholar 

  31. Könözsy L (2003) Comparison of the analytical and numerical solution of fully-developed turbulent pipe flow. In: Proceedings of the fourth international conference of Ph.D. students, Miskolc, Hungary, vol II, pp 147–152

    Google Scholar 

  32. Könözsy L (2003) Fully-developed turbulent pipe flow based on the vorticity transport. In: Proceedings of the international conference of water service science (ICWSS-2003), Brno-Ubislav, Czech Republic, pp 57–65

    Google Scholar 

  33. Könözsy L (2003) Numerical computation of fully-developed turbulent channel flow based on the streamfunction-vorticity formulation. Acta Mechanica Slovaca, Košice, Slovakia 3:449–454

    Google Scholar 

  34. Könözsy L (2003) Numerical computation of fully-developed turbulent pipe flow based on the streamfunction-vorticity formulation. In: Proceedings of the twelfth international conference on fluid flow technology (CMFF-2003), Budapest, Hungary, pp 638–645

    Google Scholar 

  35. Könözsy L (2003f) Orthogonal curvilinear coordinate grid generation (in Hungarian). GÉP J, Budapest, Hungary LIV(1):38–39

    Google Scholar 

  36. Könözsy L (2004) Computation of two-dimensional shear flows with the solution of the turbulent vorticity transport equation (in Hungarian). PhD thesis, University of Miskolc, Faculty of Mechanical Engineering and Informatics, István Sályi Ph.D. School of Engineering Sciences, Department of Fluid and Heat Engineering, H-3515 Miskolc-Egyetemváros, Miskolc, Hungary, pp 1–84

    Google Scholar 

  37. Leschziner M (2016) Statistical turbulence modelling for fluid dynamics – demystified. Imperial College Press, London

    MATH  Google Scholar 

  38. Menter FR (1992) Improved two-equation \(k\)-\(\omega \) turbulence models for aerodynamic flows. NASA Technical Memorandum 103975, pp 1–31

    Google Scholar 

  39. Menter FR (1994) Improved two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32(8):1598–1605

    Article  Google Scholar 

  40. Menter FR (2011) Turbulence modeling for engineering flows. A technical paper from ANSYS, Inc., pp 1–25

    Google Scholar 

  41. Prandtl L (1925) Über die ausgebildete Turbulenz. ZAMM 5:136–139

    MATH  Google Scholar 

  42. Szabó S, Kecke HJ (2000) Untersuchung der Messungsmöglichkeiten der Geschwindigkeitsverteilung innerhalb eines Koaxialen Kanals mittels LDV-Methoden. In: microCAD’2000, international computer science conference, University of Miskolc, Miskolc, Hungary, Section M, pp 145–150

    Google Scholar 

  43. Szabó S, Kecke HJ (2001) Experimentelle Bestimmung der Geschwindigkeitsverteilung in einem strömungsmaschinen-typischen Kanal mittels Laser-Doppler-Velocimetrie (LDV). Technisches Messen 68:131–139

    Article  Google Scholar 

  44. Szabó S, Juhász A, Farkas A, Janiga G (1999) Determination the velocity distribution with high accuracy. In: 11th conference on fluid and heat machinery and equipment, Budapest, CD-ROM, pp 1–3

    Google Scholar 

  45. Vitillo F, Galati C, Cachona L, Laroche E, Millan P (2015) An anisotropic shear stress transport (ASST) model formulation. Comput Math Appl 70:2238–2251

    Article  MathSciNet  Google Scholar 

  46. Wilcox DC (1988) The reassessment of the scale-determining equation for advanced turbulence models. AIAA J 26:1299–1310

    Article  MathSciNet  Google Scholar 

  47. Wilcox DC (1993) Turbulence modeling for CFD, 1st edn. DCW Industries Inc., Glendale. ISBN 0-9636051-0-0

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Könözsy .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Könözsy, L. (2019). A New Hypothesis on the Anisotropic Reynolds Stress Tensor. In: A New Hypothesis on the Anisotropic Reynolds Stress Tensor for Turbulent Flows. Fluid Mechanics and Its Applications, vol 120. Springer, Cham. https://doi.org/10.1007/978-3-030-13543-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13543-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13542-3

  • Online ISBN: 978-3-030-13543-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics