Skip to main content

Study of Structural Changes in a Nickel Oxide Containing Anode Material During Reduction and Oxidation at 600 °C

  • Conference paper
  • First Online:
Nanocomposites, Nanostructures, and Their Applications (NANO 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 221))

Included in the following conference series:

Abstract

In this work, the substructure changes in the YSZ–NiO ceramic material for solid oxide fuel cell anodes, during its reduction and oxidation at 600 °C, have been studied. A series of the YSZ–NiO specimens were undergone to three treatment modes at 600 °C, namely: (1) one-time reduction in a hydrogenous atmosphere; (2) redox cycling (five cycles), each redox cycle comprises the stages of isothermal dwell in a hydrogenous atmosphere and in air; and (3) redox cycling (five cycles), with extra stages of degassing. Two extra modes were used to simulate the behavior of materials in a water vapor-containing atmosphere. Increased porosity, along with an increased amount of reduced Ni, has been revealed in specimens after mode 2 test. It was established that in case of such treatment, a reaction of oxygen with the remaining hydrogen on the stage of isothermal dwell in air at 600 °C takes place followed by a substantial increase of water vapor local pressure. Such high-pressure conditions occur in small pores causing nucleation of nanocracks on three-phase (“nickel phase-zirconium phase-pore”) boundaries. Such effect of water vapor is probably the main reason of structural degradation of the cermet. After mode 3 test of specimens, it was revealed that the stage of degassing between half-cycles of reduction and oxidation plays a substantial role in the formation of Ni-network. Contrary to mode 2, the following structural peculiarities were detected: (1) formation of a network of nanopores in the particle outer layer; (2) reduction of Ni-phase particle size by separating Ni clusters of the particle outer layer; (3) redistribution of fine Ni particles that allows the porosity to be partially decreased; and (4) formation of a network of reduced Ni particles that improves electric conductivity and structural strength of the cermet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ettler M, Timmermann H, Malzbender J et al (2010) Durability of Ni anodes during reoxidation cycles. J Power Sources 195:5452–5467

    Article  Google Scholar 

  2. Sarantaridis D, Atkinson A (2007) Redox cycling of Ni-based solid oxide fuel cell anodes: a review. Fuel Cells 3:246–258

    Article  Google Scholar 

  3. Faes A, Nakajo A, Hessler-Wyser A et al (2009) Redox study of anode-supported solid oxide fuel cell. J Power Sources 193:55–64

    Article  Google Scholar 

  4. Kim P, Brett D, Brandon N (2009) The effect of water content on the electrochemical impedance response and microstructure of Ni-CGO anodes for solid oxide fuel cells. J Power Sources 189(2):1060–1065

    Article  Google Scholar 

  5. Primdahl S (1999) Nickel/yttria-stabilised zirconia cermet anodes for solid oxide fuel cells. Dissertation, University of Twente, Faculty of Chemical Technology, The Netherlands, and Riso National Laboratory, Materials Research Department, Denmark

    Google Scholar 

  6. Dees DW, Balachandran U, Dorris SE et al (1989) Interfacial effects in monolithic solid oxide fuel cells. SOFC I: The Electrochemical Society Proceedings Series. Pennington, pp 317–321

    Article  Google Scholar 

  7. Vasyliv B, Podhurska V, Ostash O (2017) Preconditioning of the YSZ-NiO fuel cell anode in hydrogenous atmospheres containing water vapor. Nanoscale Res Lett 12:265. https://doi.org/10.1186/s11671-017-2038-4

    Article  ADS  Google Scholar 

  8. Vasyliv BD, Ostash OP, Podhurska VY et al (2013) Method of treatment of NiO-containing anodes of a solid oxide fuel cell [in Ukrainian]. Patent of Ukraine No. 78992. Published on 10.04.13, Bulletin No. 7

    Google Scholar 

  9. Vasyliv BD (2010) Improvement of the electric conductivity of the material of anode in a fuel cell by the cyclic redox thermal treatment. Mater Sci 46(2):260–264

    Article  Google Scholar 

  10. Vasyliv BD, Podhurs’ka VY, Ostash OP et al (2013) Influence of reducing and oxidizing media on the physicomechanical properties of ScCeSZ–NiO and YSZ–NiO ceramics. Mater Sci 49(2):135–144

    Article  Google Scholar 

  11. Maruyama T, Fukagai N, Ueda M et al (2004) Chemical potential distribution and void formation in magnetite scale formed in oxidation of iron at 823K. Mater Sci Forum 464:807–814

    Article  Google Scholar 

  12. Faes A, Hessler-Wyser A, Zryd A et al (2012) A review of RedOx cycling of solid oxide fuel cells anode. Membranes 2(3):585–664. https://doi.org/10.3390/membranes2030585

    Article  Google Scholar 

  13. Wood A, Waldbillig D (2011) Preconditioning treatment to enhance redox tolerance of solid oxide fuel cells. US Patent 8,029,946 B2, 4 Oct 2011

    Google Scholar 

  14. Peraldi R, Monceau D, Pieraggi B (2002) Correlations between growth kinetics and microstructure for scales formed by high-temperature oxidation of pure nickel. I. Morphologies and microstructures. Oxid Met 58:249–273

    Article  Google Scholar 

  15. Podhurska V, Vasyliv B, Ostash O et al (2016) Influence of treatment temperature on microstructure and properties of YSZ–NiO anode materials. Nanoscale Res Lett 11:93. https://doi.org/10.1186/s11671-016-1306-z

    Article  ADS  Google Scholar 

  16. Clemmer RMC, Corbin SF (2009) The influence of pore and Ni morphology on the electrical conductivity of porous Ni/YSZ composite anodes for use in solid oxide fuel cell applications. Solid State Ionics 180:721–730

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kharchenko, Y.V., Blikharskyy, Z.Y., Vira, V.V., Vasyliv, B.D. (2019). Study of Structural Changes in a Nickel Oxide Containing Anode Material During Reduction and Oxidation at 600 °C. In: Fesenko, O., Yatsenko, L. (eds) Nanocomposites, Nanostructures, and Their Applications. NANO 2018. Springer Proceedings in Physics, vol 221. Springer, Cham. https://doi.org/10.1007/978-3-030-17759-1_42

Download citation

Publish with us

Policies and ethics