Skip to main content

A New Benchmark Collection for Driver Fatigue Research Based on Thermal, Depth Map and Visible Light Imagery

  • Conference paper
  • First Online:
Progress in Computer Recognition Systems (CORES 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 977))

Included in the following conference series:

Abstract

The article has two goals. The first one is to present an original benchmark database for testing methods and algorithms for driver fatigue detection. Blinking eyes – opening and closing, squinting eyes, rubbing eyes, yawning, lowering the head and shaking the head are considered. The database includes recordings acquired from a thermal, depth map and visible light cameras. The imaging environment mimicked the conditions characteristic for driver’s place of work. The second goal is to present a part of collected data. As an example of driver fatigue the eye rubbing motion was selected and the detection was made using contemporary TensorFlow-based detector, known to be accurate when working in visible lighting conditions. The results of driver’s drowsiness detection in thermal and depth map imagery are compared with the detector’s efficiency in the visible spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M et al (2016) Tensorflow: a system for large-scale machine learning. In: OSDI, vol 16, pp 265–283

    Google Scholar 

  2. Bortkiewicz A, Gadzicka E, Siedlecka J, Kosobudzki M, Dania M, Szymczak W, Jóźwiak Z, Szyjkowska A, Viebig P, Pas-Wyroślak A et al (2019) Analysis of bus drivers reaction to simulated traffic collision situations – eye-tracking studies. Int J Occup Med Environ Health 32(2):161–174. https://doi.org/10.13075/ijomeh.1896.01305

  3. Chang H, Koschan A, Abidi M, Kong SG, Won CH (2008) Multispectral visible and infrared imaging for face recognition. In: IEEE computer society conference on computer vision and pattern recognition workshops, CVPRW 2008. IEEE, pp 1–6

    Google Scholar 

  4. Craye C, Rashwan A, Kamel MS, Karray F (2016) A multi-modal driver fatigue and distraction assessment system. Int J Intell Transp Syst Res 14(3):173–194

    Google Scholar 

  5. Cyganek B, Gruszczyński S (2014) Hybrid computer vision system for drivers eye recognition and fatigue monitoring. Neurocomputing 126:78–94

    Article  Google Scholar 

  6. FLIR Instruments: Thermovision sdk user’s manual, 2.6 sp2 edition (2010)

    Google Scholar 

  7. Forczmański P (2017) Human face detection in thermal images using an ensembleof cascading classifiers. Adv Intell Syst Comput 534:205–215. https://doi.org/10.1007/978-3-319-48429-7_19

    Article  Google Scholar 

  8. Forczmański P (2018) Performance evaluation of selected thermal imaging-based human face detectors. Adv Intell Syst Comput 578:170–181. https://doi.org/10.1007/978-3-319-59162-9_18

    Article  Google Scholar 

  9. Forczmański P, Kutelski K (2019) Driver drowsiness estimation by means of face depth map analysis. Adv Intell Syst Comput 889:396–407. https://doi.org/10.1007/978-3-030-03314-9_34

    Article  Google Scholar 

  10. Forczmański P, Małecki K (2013) Selected aspects of traffic signs recognition: visual versus RFID approach. In: International conference on transport systems telematics. Springer, pp 268–274 (2013)

    Google Scholar 

  11. Jo J, Lee SJ, Park KR, Kim IJ, Kim J (2014) Detecting driver drowsiness using feature-level fusion and user-specific classification. Expert Syst Appl 41(4):1139–1152

    Article  Google Scholar 

  12. Källhammer JE (2006) Night vision: requirements and possible roadmap for FIR and NIR systems. In: Photonics in the automobile II, vol 6198. International Society for Optics and Photonics, p 61980F (2006)

    Google Scholar 

  13. Kong W, Zhou L, Wang Y, Zhang J, Liu J, Gao S (2015) A system of driving fatigue detection based on machine vision and its application on smart device. J Sens 2015:11. Article ID 548602. https://doi.org/10.1155/2015/548602

    Article  Google Scholar 

  14. Krishnasree V, Balaji N, Rao PS (2014) A real time improved driver fatigue monitoring system. WSEAS Trans Sig Process 10:146

    Google Scholar 

  15. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC (2016) SSD: single shot multibox detector. In: European conference on computer vision. Springer, pp 21–37

    Google Scholar 

  16. Macioszek E (2017) Analysis of significance of differences between psychotechnical parameters for drivers at the entries to one-lane and turbo roundabouts in Poland. Adv Intell Syst Comput 505:149–161. https://doi.org/10.1007/978-3-319-43991-4_13

    Article  Google Scholar 

  17. Makowiec-Dabrowska T, Siedlecka J, Gadzicka E, Szyjkowska A, Dania M, Viebig P, Kosobudzki M, Bortkiewicz A (2015) Work fatigue in urban bus drivers. Medycyna pracy 66(5):661–677

    Article  Google Scholar 

  18. Małecki K, Nowosielski A, Forczmański P (2017) Multispectral data acquisition in the assessment of driver s fatigue. Commun Comput Inf Sci 715:320–332. https://doi.org/10.1007/978-3-319-66251-0_26

    Article  Google Scholar 

  19. Małecki K, Watróbski J (2017) Mobile system of decision-making on road threats. Procedia Comput Sci 112:1737–1746

    Article  Google Scholar 

  20. Mitas A, Czapla Z, Bugdol M, Ryguła A (2010) Registration and evaluation of biometric parameters of the driver to improve road safety. Scientific Papers of Transport, Silesian University of Technology, pp 71–79

    Google Scholar 

  21. Robert S, Adam W (2016) Mouth features extraction for emotion classification. In: Proceedings of the 2016 federated conference on computer science and information systems, FedCSIS, pp 1685–1692. https://doi.org/10.15439/2016F390

  22. Staniek M (2017) Detection of cracks in asphalt pavement during road inspection processes. Sci J Silesian Univ Technol Ser Transp 96:175–184

    Google Scholar 

  23. Staniek M (2017) Stereo vision method application to road inspection. Baltic J Road Bridge Eng 12(1):38–47

    Article  Google Scholar 

  24. Weller G, Schlag B (2007) Road user behavior model, deliverable D8 project RIPCORD-ISERET. In: 6th framework program of the European union

    Google Scholar 

  25. Zhang Y, Hua C (2015) Driver fatigue recognition based on facial expression analysis using local binary patterns. Optik-Int J Light Electron Opt 126(23):4501–4505

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Małecki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Małecki, K., Forczmański, P., Nowosielski, A., Smoliński, A., Ozga, D. (2020). A New Benchmark Collection for Driver Fatigue Research Based on Thermal, Depth Map and Visible Light Imagery. In: Burduk, R., Kurzynski, M., Wozniak, M. (eds) Progress in Computer Recognition Systems. CORES 2019. Advances in Intelligent Systems and Computing, vol 977. Springer, Cham. https://doi.org/10.1007/978-3-030-19738-4_30

Download citation

Publish with us

Policies and ethics