Skip to main content

Integrated Pest Management Methods and Considerations Concerning Implementation in Greenhouses

  • Chapter
  • First Online:

Part of the book series: Plant Pathology in the 21st Century ((ICPP,volume 9))

Abstract

We consider IPM as a combination of durable, environmentally, toxicologically and economically justifiable farming practices which prevent pest damage primarily through the use of natural factors limiting pest population growth and disease development, and which resort only if needed to other, preferably non-chemical, measures. IPM is not simply a combination of various control methods. We give an overview of IPM measures used in greenhouses and refer to specific chapters in this book for examples. In IPM, each practical situation dictates a number of special aspects for consideration, and IPM methods need continuous adaptation, making IPM knowledge intensive and interactive. Successful IPM programmes for greenhouse crops have a number of characteristics in common: (a) their use was promoted only after a complete IPM programme had been developed, (b) intensive support by the extension service was essential during initial implementation, (c) the costs of crop protection with IPM should not be higher than those of a chemical control programme, and (d) non-chemical management methods, such as biocontrol agents and resistant plant material, should be as easily available, as reliable, and as constant in quality, as chemical agents. IPM research and implementation in greenhouses during the past 50 years has taught us the lesson that the development of an IPM programme needs to be discussed in a very early stage with all stakeholders, including growers, pest management specialists, extension services and researchers. Such a meeting often results in a pragmatic design of a draft, very pragmatic IPM programme, which is continuously adapted during later meetings, based on growers’ experience and new research results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The word pest is used in this chapter as defined by FAO/IIPC (1997), and includes weeds and animal pests as well as causal agents of diseases.

References

  • Achuo EA, Prinsen E, Hofte M (2006) Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici. Plant Pathol 55(2):178–186. https://doi.org/10.1111/j.1365-3059.2006.01340.x

    Article  CAS  Google Scholar 

  • Albajes R, Gullino ML, van Lenteren JC, Elad Y (eds) (1999) Integrated pest and disease management in Greenhouse crops. Kluwer Publishers, Dordrecht. 545 pp

    Google Scholar 

  • Albert R, Kunstler A, Lantos F, Adam AL, Kiraly L (2017) Graft-transmissible resistance of cherry pepper (Capsicum annuum var. cerasiforme) to powdery mildew (Leveillula taurica) is associated with elevated superoxide accumulation, NADPH oxidase activity and pathogenesis-related gene expression. Acta Physiologiae Plantarum 39(2) doi:https://doi.org/10.1007/s11738-017-2353-5

  • Bacon SJ, Bacher S, Aebi A (2012) Gaps in border controls are related to quarantine alien insect invasions in Europe. PLoS One 7(10):e47689

    Article  CAS  Google Scholar 

  • Benuzzi M, Ladurner E (2017) Plant protection tools in organic farming. In: Vacante V, Kreiter S (eds) Handbook of pest management in organic farming. CABI, Wallingford, pp 24–59

    Google Scholar 

  • Bourguet D, Guillemaud T (2016) The hidden and external costs of pesticide use. In: Lightfouse E (ed) Sustanable agriculture reviews. Springer, Dordrecht, pp 35–120

    Chapter  Google Scholar 

  • Butler DM, Kokalis-Burelle N, Albano JP, McCollum TG, Muramoto J, Shennan C, Rosskopf EN (2014) Anaerobic soil disinfestation (ASD) combined with soil solarization as a methyl bromide alternative: vegetable crop performance and soil nutrient dynamics. Plant Soil 378(1):365–381. https://doi.org/10.1007/s11104-014-2030-z

    Article  CAS  Google Scholar 

  • Buurma JS, Lamine C, Haynes I (2012) Transition to consumer-driven value chains in The Netherlands. Acta Hortic 2012:69–76

    Article  Google Scholar 

  • Calvo FJ, Bolckmans K, Belda JE (2012a) Release rate for a pre-plant application of Nesidiocoris tenuis for Bemisia tabaci control in tomato. BioControl 57:809–817

    Article  Google Scholar 

  • Calvo FJ, Bolckmans K, Belda JE (2012b) Biological control-based IPM in sweet pepper greenhouses using Amblyseius swirskii (Acari: Phytoseiidae). Biocontrol Sci Tech 22:1398–1416

    Article  Google Scholar 

  • CBD (1993) Convention on biological diversity (with annexes). Concluded at Rio de Janeiro on 5 June 1992. United Nation Treaty Ser 1760(30619):142–382

    Google Scholar 

  • Cerf M, Bail L, Lusson M, Omon B (2017) Contrasting intermediation practices in various advisory service networks in the case of the French Ecophyto plan. J Agric Educ Ext 23(3):231–244. https://doi.org/10.1080/1389224x.2017.1320641

    Article  Google Scholar 

  • Chambre d’Agriculture des Bouches-du-Rhône (2017) Salades d’abri en Provence Se protéger des pucerons. http://www.grab.fr/wp-content/uploads/2017/10/6-fiche-APREL-CA-13-chrysope-contre-pucerons-salade-2017.pdf. Accessed on 22 Dec 2017

  • Cock MJW, van Lenteren JC, Brodeur J, Barratt BIP, Bigler F, Bolckmans K, Consoli FL, Haas F, Mason PG, Parra JRP (2010) Do new access and benefit sharing procedures under the convention on biological diversity threaten the future of biological control? BioControl 55:199–218

    Article  Google Scholar 

  • Colla G, Rouphael Y (2015) Biostimulants in horticulture. Sci Hortic 196(Supplement C):1–2. https://doi.org/10.1016/j.scienta.2015.10.044

    Article  Google Scholar 

  • Datnoff LE, Elmer WH, Huber DM (2007) Mineral nutrition and plant disease. American Phytopathological Society (APS Press), St. Paul

    Google Scholar 

  • de Ponti OMB, Mollema C (1992) Emerging breeding strategies for insect resistance. In: Stalker HT, Murphy JP (eds) Plant breeding in the 1990s. CABI Publishing, Wallingford, pp 323–347

    Google Scholar 

  • Decognet V, Ravetti F, Martin C, Nicot PC (2010) Improved leaf pruning reduces development of stem cankers caused by grey mould in greenhouse tomatoes. Agron Sustain Dev 30(2):465–472

    Article  Google Scholar 

  • Dicke M (2016) Plant phenotypic plasticity in the phytobiome: a volatile issue. Curr Opin Plant Biol 32:17–23

    Article  Google Scholar 

  • Dutch Ministry of Agriculture (2005) Durable crop protection: policy for crop protection towards 2010. Dutch Ministry of Agriculture, Nature and Food Quality, Den Haag

    Google Scholar 

  • EC (2009) Sustainable use directive. European Parliament and of the council of 21 October 2009 establishing a framework for community action to achieve the sustainable use of pesticides. Off J Eur Union L309:71–86

    Google Scholar 

  • Erisman JW, van Eekeren N, de Wit J, Koopmans C, Cuijpers W, Oerlemans N, Koks BJ (2016) Agriculture and biodiversity: a better balance benefits both. AIMS Agric Food 1:157–174

    Article  Google Scholar 

  • FAO/IPPC (1997) International plant protection convention. FAO, Rome

    Google Scholar 

  • Fenoll J, Garrido I, Vela N, Ros C, Navarro S (2017) Enhanced degradation of spiro-insecticides and their leacher enol derivatives in soil by solarization and biosolarization techniques. Environ Sci Pollut Res 24(10):9278–9285. https://doi.org/10.1007/s11356-017-8589-1

    Article  CAS  Google Scholar 

  • Gamliel A, van Bruggen AHC (2016) Maintaining soil health for crop production in organic greenhouses. Sci Hortic 208(Supplement C):120–130. https://doi.org/10.1016/j.scienta.2015.12.030

    Article  Google Scholar 

  • Grumet R, Colle M, Ando K, Xie D-S, Havenga L, Switzenberg JA (2013) Modified plant architecture to enhance crop disease control: genetic control and possible value of upright fruit position in cucumber. Eur J Plant Pathol 135(3):545–560. https://doi.org/10.1007/s10658-012-0087-1

    Article  Google Scholar 

  • Han P, Lavoir AV, Le Bot J, Amiens-Desneux E, Desneux N (2014) Nitrogen and water availability to tomato plants triggers bottom-up effects on the leafminer Tuta absoluta. Sci Rep 4:8. https://doi.org/10.1038/srep04455

    Article  CAS  Google Scholar 

  • Hoffland E, Jeger MJ, van Beusichem ML (2000) Effect of nitrogen supply rate on disease resistance in tomato depends on the pathogen. Plant Soil 218(1–2):239–247. https://doi.org/10.1023/a:1014960507981

    Article  CAS  Google Scholar 

  • Jørgensen LN, Bosch F, Oliver RP, Heick TM, Paveley ND (2017) Targeting fungicide inputs according to need. Annu Rev Phytopathol 55(1):181–203. https://doi.org/10.1146/annurev-phyto-080516-035357

    Article  CAS  PubMed  Google Scholar 

  • Kappers IF, Hoogerbrugge H, Bouwmeester HJ, Dicke M (2011) Variation in herbivory-induced volatiles among cucumber (Cucumis sativus L.) varieties has consequences for the attraction of carnivorous natural enemies. J Chem Ecol 37:150–160

    Article  CAS  Google Scholar 

  • Katan J (2017) Disease caused by soilborne pathogens: biology, management and challenges. J Plant Pathol 99(2):305–315

    Google Scholar 

  • Kyriacou MC, Rouphael Y, Colla G, Zrenner R, Schwarz D (2017) Vegetable grafting: the implications of a growing agronomic imperative for vegetable fruit quality and nutritive value. Front Plant Sci 8:741. https://doi.org/10.3389/fpls.2017.00741

    Article  PubMed  PubMed Central  Google Scholar 

  • La Torre A, Battaglia V, Caradonia F (2016) An overview of the current plant biostimulant legislations in different European member states. J Sci Food Agric 96(3):727–734. https://doi.org/10.1002/jsfa.7358

    Article  CAS  PubMed  Google Scholar 

  • Le Mire G, Nguyen ML, Fassotte B, du Jardin P, Verheggen F, Delaplace P, Jijakli MH (2016) Implementing plant biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems. A review. Biotechnol Agron Soc 20:299–313

    Google Scholar 

  • Louws FJ, Rivard CL, Kubota C (2010) Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds. Sci Hortic 127(2):127–146. https://doi.org/10.1016/j.scienta.2010.09.023

    Article  Google Scholar 

  • Mason PG, Cock MJW, Barratt BIP, van Lenteren JC, Brodeur J, Klapwijk JN, Consôli FL, Hoelmer K, Heimpel GE (2018) Best practices for the use and exchange of biological control genetic resources relevant for food and agriculture. BioControl. https://doi.org/10.1007/s10526-017-9810-3

    Article  Google Scholar 

  • Mazzola M, Freilich S (2017) Prospects for biological soilborne disease control: application of indigenous versus synthetic microbiomes. Phytopathology 107(3):256–263. https://doi.org/10.1094/phyto-09-16-0330-rvw

    Article  CAS  PubMed  Google Scholar 

  • Messelink GJ, Bennison J, Alomar O, Ingegno BL, Tavella L, Shipp L, Palevsky E, Wäckers FL (2014) Approaches to conserving natural enemy populations in greenhouse crops: current methods and future prospects. BioControl 59:377–393

    Article  Google Scholar 

  • Nicot PC, Bardin M (2012) Biological and integrated protection in the Mediterranean greenhouse: is disease management the weak link? IOBC WPRS Bull 80:11–17

    Google Scholar 

  • Nicot PC, Fabre R, Lebkara T, Ozayou S, Abro MA, Duffaud M, Lecompte F, Jeannequin B (2012) Manipulating nitrogen fertilization for the management of diseases in the tomato greenhouse: what perspectives for IPM? IOBC WPRS Bull 80:333–338

    Google Scholar 

  • Norldlund DA, Jones RL, Lewis WJ (1981) Semiochemicals and their role in pest control. Wiley, New York

    Google Scholar 

  • Oka Y, Shapira N, Fine P (2007) Control of root-knot nematodes in organic farming systems by organic amendments and soil solarization. Crop Prot 26(10):1556–1565. https://doi.org/10.1016/j.cropro.2007.01.003

    Article  Google Scholar 

  • Öz H, Coskan A, Atilgan A (2017) Determination of effects of various plastic covers and biofumigation on soil temperature and soil nitrogen form in greenhouse solarization: new solarization cover material. J Polym Environ 25(2):370–377. https://doi.org/10.1007/s10924-016-0819-y

    Article  CAS  Google Scholar 

  • Pane C, Villecco D, Pentangelo A, Lahoz E, Zaccardelli M (2012) Integration of soil solarization with Brassica carinata seed meals amendment in a greenhouse lettuce production system. Acta Agric Scand B Soil Plant Sci 62(4):291–299. https://doi.org/10.1080/09064710.2011.613850

    Article  Google Scholar 

  • Pannacci E, Lattanzi B, Tei F (2017) Non-chemical weed management strategies in minor crops: a review. Crop Prot 96(Supplement C):44–58. https://doi.org/10.1016/j.cropro.2017.01.012

    Article  Google Scholar 

  • Pappas ML, Broekgaarden C, Broufas GD, Kant MR, Messelink GJ, Steppuhn A, Wackers F, van Dam NM (2017) Induced plant defences in biological control of arthropod pests: a double-edged sword. Pest Manag Sci 73(9):1780–1788. https://doi.org/10.1002/ps.4587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Hedo M, Suay R, Alonso M, Ruocco M, Giorgini M, Poncet C, Urbaneja A (2017) Resilience and robustness of IPM in protected horticulture in the face of potential invasive pests. Crop Prot 97:119–127

    Article  Google Scholar 

  • Pimentel D, Burgess M (2014) Environmental and economic costs of the application of pesticides primarily in the United States. In: Pimentel D, Peshin R (eds) Integrated pest management. Springer, Dordrecht, pp 47–71

    Chapter  Google Scholar 

  • Prenafeta-Boldu FX, Trillas I, Vinas M, Guivernau M, Caceres R, Marfa O (2017) Effectiveness of a full-scale horizontal slow sand filter for controlling phytopathogens in recirculating hydroponics: from microbial isolation to full microbiome assessment. Sci Total Environ 599:780–788. https://doi.org/10.1016/j.scitotenv.2017.04.221

    Article  CAS  PubMed  Google Scholar 

  • Radcliffe EB, Hutchinson WD, Cancelado RE (eds) (2009) Integrated pest management: concepts, tactics, strategies and case studies. Cambridge University Press, Cambridge

    Google Scholar 

  • Röling NG, van de Fliert E (1994) Transforming extension for sustainable agriculture: the case of integrated pest management in rice in Indonesia. Agric Hum Values 11:96–108

    Article  Google Scholar 

  • Scarlett K, Collins D, Tesoriero L, Jewell L, van Ogtrop F, Daniel R (2016) Efficacy of chlorine, chlorine dioxide and ultraviolet radiation as disinfectants against plant pathogens in irrigation water. Eur J Plant Pathol 145(1):27–38. https://doi.org/10.1007/s10658-015-0811-8

    Article  CAS  Google Scholar 

  • Schlatter D, Kinkel L, Thomashow L, Weller D, Paulitz T (2017) Disease suppressive soils: new insights from the soil microbiome. Phytopathology 107(11):1284–1297. https://doi.org/10.1094/phyto-03-17-0111-rvw

    Article  PubMed  Google Scholar 

  • Schwarz D, Rouphael Y, Colla G, Venema JH (2010) Grafting as a tool to improve tolerance of vegetables to abiotic stresses: thermal stress, water stress and organic pollutants. Sci Hortic 127(2):162–171. https://doi.org/10.1016/j.scienta.2010.09.016

    Article  CAS  Google Scholar 

  • Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE, Jeschke JM, Pagad S, Pysek P, Winter M, Arianoutsou M, Bacher S, Blasius B, Brundu G, Capinha C, Celesti-Grapov L, Dawson W, Dullinger S, Fuentes N, Jaeger H, Kartesz J, Kenis M, Kreft H, Kuehn L, Lenzner B, Liebhold A, Mosena A, Moser D, Nishino M, Pearman D, Pergl J, Rabitsch W, Rojas-Sandoval J, Roques A, Rorke S, Rossinelli S, Roy HE, Scalera R, Schindler S, Stajerova K, Tokarska-Guzik B, van Kleunen M, Walker K, Weigelt P, Yamanaka T, Essl F (2017) No saturation in the accumulation of alien species worldwide. Nat Commun 8(14435):1–9. https://doi.org/10.1038/ncomms14435

    Article  CAS  Google Scholar 

  • Shrestha U, Auge RM, Butler DM (2016) A meta-analysis of the impact of anaerobic soil disinfestation on pest suppression and yield of horticultural crops. Front Plant Sci 7:20. https://doi.org/10.3389/fpls.2016.01254

    Article  Google Scholar 

  • Suthaparan A, Solhaug KA, Stensvand A, Gislerod HR (2017) Daily light integral and day light quality: potentials and pitfalls of nighttime UV treatments on cucumber powdery mildew. J Photochem Photobiol B Biol 175:141–148. https://doi.org/10.1016/j.jphotobiol.2017.08.041

    Article  CAS  Google Scholar 

  • Tillman D, Reich P, Isbell F (2012) Biodiversity impacts ecosystem productivity as much as resources, disturbance or herbivory. PNAS 109:10394–10397

    Article  Google Scholar 

  • Tivoli B, Calonnec A, Richard B, Ney B, Andrivon D (2013) Current knowledge on plant/canopy architectural traits that reduce the expression and development of epidemics. Eur J Plant Pathol 135(3):471–478. https://doi.org/10.1007/s10658-012-0066-6

    Article  Google Scholar 

  • van Lenteren JC (1993) Integrated pest management: the inescapable future. In: Zadoks JC (ed) Modern crop protection: developments and perspectives. Wageningen Pers, Wageningen, pp 217–225

    Google Scholar 

  • van Lenteren JC (2000) A greenhouse without pesticides: fact or fantasy? Crop Prot 19(6):375–384. https://doi.org/10.1016/S0261-2194(00)00038-7

    Article  Google Scholar 

  • van Lenteren JC (2009) In: Radcliffe EB, Hutchinson WD, Cancelado RE (eds) IPM in greenhouse vegetables and ornamentals. Integrated Pest management: concepts, tactics, strategies and case studies. Cambridge University Press, Cambridge, pp 354–365

    Google Scholar 

  • van Lenteren JC, Woets J (1988) Biological and integrated pest control in greenhouses. Annu Rev Entomol 33:239–269. https://doi.org/10.1146/annurev.en.33.010188.001323

    Article  Google Scholar 

  • van Lenteren JC, Bolckmans K, Köhl J, Ravensberg W, Urbaneja A (2018) Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl. https://doi.org/10.1007/s10526-017-9801-4

    Article  Google Scholar 

  • Vargas-Hernandez M, Macias-Bobadilla I, Guevara-Gonzalez RG, Romero-Gomez SD, Rico-Garcia E, Ocampo-Velazquez RV, Alvarez-Arquieta LD, Torres-Pacheco I (2017) Plant Hormesis management with biostimulants of biotic origin in agriculture. Front Plant Sci 8:11. https://doi.org/10.3389/fpls.2017.01762

    Article  Google Scholar 

  • Vela N, Fenoll J, Navarro G, Garrido I, Navarro S (2017) Trial of solar heating methods (solarization and biosolarization) to reduce persistence of neonicotinoid and diamide insecticides in a semiarid Mediterranean soil. Sci Total Environ. 590-591 (Supplement C):325–332. https://doi.org/10.1016/j.scitotenv.2017.03.013

    Article  CAS  Google Scholar 

  • Ximenez-Embun MG, Castanera P, Ortego F (2017) Drought stress in tomato increases the performance of adapted and non-adapted strains of Tetranychus urticae. J Insect Physiol 96:73–81. https://doi.org/10.1016/j.jinsphys.2016.10.015

    Article  CAS  PubMed  Google Scholar 

  • Xu XM, Robinson J, Else MA (2013) Effects of nitrogen input and deficit irrigation within the commercial acceptable range on susceptibility of strawberry leaves to powdery mildew. Eur J Plant Pathol 135(4):695–701. https://doi.org/10.1007/s10658-012-0106-2

    Article  Google Scholar 

  • Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH (2017) Biostimulants in plant science: a global perspective. Front Plant Sci 7:32. https://doi.org/10.3389/fpls.2016.02049

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joop C. van Lenteren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van Lenteren, J.C., Nicot, P.C. (2020). Integrated Pest Management Methods and Considerations Concerning Implementation in Greenhouses. In: Gullino, M., Albajes, R., Nicot, P. (eds) Integrated Pest and Disease Management in Greenhouse Crops. Plant Pathology in the 21st Century, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-22304-5_6

Download citation

Publish with us

Policies and ethics