Skip to main content

Personalized Neo-Epitope Vaccines for Cancer Treatment

  • Chapter
  • First Online:
Current Immunotherapeutic Strategies in Cancer

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 214))

Abstract

After more than a century of efforts to establish cancer immunotherapy in clinical practice, the advent of checkpoint inhibition (CPI) therapy was a critical breakthrough toward this direction (Hodi et al. in Cell Rep 13(2):412–424, 2010; Wolchok et al. in N Engl J Med 369(2):122–133, 2013; Herbst et al. in Nature 515(7528):563–567, 2014; Tumeh et al. in Nature 515(7528):568–571, 2014). Further, CPIs shifted the focus from long studied shared tumor-associated antigens to mutated ones. As cancer is caused by mutations in somatic cells, the concept to utilize these correlates of ‘foreignness’ to enable recognition and lysis of the cancer cell by T cell immunity seems an obvious thing to do.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abelin JG et al (2017) Mass spectrometry profiling of HLA-associated peptidomes in mono-allelic cells enables more accurate epitope prediction. Immunity 46(2):315–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexandrov LB et al (2013) Signatures of mutational processes in human cancer. Nature 500(7463):415–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold PY et al (2002) The majority of immunogenic epitopes generate CD4+ T cells that are dependent on MHC class II-bound peptide-flanking residues. J Immunol (Baltimore, Md.: 1950) 169(2):739–749

    Article  CAS  PubMed  Google Scholar 

  • Baghdadi M et al (2013) Combined blockade of TIM-3 and TIM-4 augments cancer vaccine efficacy against established melanomas. Cancer Immunol Immunother: CII 62(4):629–637

    Article  CAS  PubMed  Google Scholar 

  • Balachandran VP et al (2017) Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature

    Google Scholar 

  • Bartkowiak T et al (2015) Unique potential of 4-1BB agonist antibody to promote durable regression of HPV+ tumors when combined with an E6/E7 peptide vaccine. Proc Natl Acad Sci USA 112(38):E5290–E5299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassani-Sternberg M et al (2015) Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation. Mol Cell Proteomics: MCP 14(3):658–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosch GJ et al (1996) Recognition of BCR-ABL positive leukemic blasts by human CD4+ T cells elicited by primary in vitro immunization with a BCR-ABL breakpoint peptide. Blood 88(9):3522–3527

    CAS  PubMed  Google Scholar 

  • Britten CM et al (2013) The regulatory landscape for actively personalized cancer immunotherapies. Nat Biotechnol 31(10):880–882

    Article  CAS  PubMed  Google Scholar 

  • Carreno BM et al (2015) A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science (New York, N.Y.) 348(6236):803–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castle JC et al (2012) Exploiting the mutanome for tumor vaccination. Can Res 72(5):1081–1091

    Article  CAS  Google Scholar 

  • Christinck ER et al (1991) Peptide binding to class I MHC on living cells and quantitation of complexes required for CTL lysis. Nature 352(6330):67–70

    Article  CAS  PubMed  Google Scholar 

  • Cohen AD et al (2006) Agonist anti-GITR antibody enhances vaccine-induced CD8(+) T-cell responses and tumor immunity. Can Res 66(9):4904–4912

    Article  CAS  Google Scholar 

  • Corrales L et al (2015) Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep 11(7):1018–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coulie PG et al (1995) A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. Proc Natl Acad Sci USA 92(17):7976–7980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng L et al (2014) STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41(5):543–852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duan F et al (2014) Genomic and bio-informatic profiling of mutational neo-epitopes reveals new rules to predict anti-cancer immunogenicity. J Exp Med 211(11):2231–2248

    Article  PubMed  PubMed Central  Google Scholar 

  • Foley EJ (1953) Antigenic properties of methylcholanthrene-induced tumors in mice of the strain of origin. Can Res 13(12):835–837

    CAS  Google Scholar 

  • Galluzzi L et al (2016) Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol, Oct 17, p.Epub ahead of print

    Google Scholar 

  • Ganss R et al (2002) Combination of T-cell therapy and trigger of inflammation induces remodeling of the vasculature and tumor eradication. Can Res 62:1462–1470

    CAS  Google Scholar 

  • Gjertsen M, Breivik J, Saeterdal I (1995) Vaccination with mutant ras peptides and induction of T-cell responsiveness in pancreatic carcinoma patients carrying the corresponding RAS mutation. Lancet 346(8987):1399–1400

    Article  CAS  PubMed  Google Scholar 

  • Grosso JF et al (2007) LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems. J Clin Investig 117(11):3383–3392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gubin MM et al (2014) Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515(7528):577–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Harndahl M et al (2012) Peptide-MHC class I stability is a better predictor than peptide affinity of CTL immunogenicity. Eur J Immunol 42(6):1405–1416

    Article  CAS  PubMed  Google Scholar 

  • Herbst RS et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515(7528):563–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodi FS et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. New Engl J Med 363(8):711–723

    Article  CAS  PubMed  Google Scholar 

  • Holmgaard RB et al (2015) Tumor-expressed IDO recruits and activates MDSCs in a Treg-dependent manner. Cell Rep 13(2):412–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoof I et al (2009) NetMHCpan, a method for MHC class i binding prediction beyond humans. Immunogenetics 61(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Houbiers JG et al (1993) In vitro induction of human cytotoxic T lymphocyte responses against peptides of mutant and wild-type p53. Eur J Immunol 23(9):2072–2077

    Article  CAS  PubMed  Google Scholar 

  • Iida N et al (2013) Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science (New York, N.Y.) 342(6161):967–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwasaki A, Medzhitov R (2015) Control of adaptive immunity by the innate immune system. Nat Immunol 16(4):343–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johanns TM et al (2016) Endogenous neoantigen-specific CD8 T cells identified in two glioblastoma models using a cancer immunogenomics approach. Cancer Immunol Res 4(12):1007–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jørgensen KW et al (2014) NetMHCstab—predicting stability of peptide-MHC-I complexes; impacts for cytotoxic T lymphocyte epitope discovery. Immunology 141(1):18–26

    Article  PubMed  CAS  Google Scholar 

  • Kesmir C et al (2002) Prediction of proteasome cleavage motifs by neural networks. Protein Eng 15(4):287–296

    Article  CAS  PubMed  Google Scholar 

  • Klein G et al (1960) Demonstration of resistance against methylcholanthrene-induced sarcomas in the primary autochthonous host. Can Res 20:1561–1572

    CAS  Google Scholar 

  • Klug F et al (2013) Low-Dose Irradiation Programs Macrophage Differentiation to an iNOS(+)/M1 Phenotype that Orchestrates Effective T Cell Immunotherapy. Cancer Cell 24(5):589–602

    Article  CAS  PubMed  Google Scholar 

  • Kreiter S et al (2015) Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520(7549):692–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurts C et al (1998) Major histocompatibility complex class I-restricted cross-presentation is biased towards high dose antigens and those released during cellular destruction. J Exp Med 188(2):409–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landais E et al (2009) New design of MHC class II tetramers to accommodate fundamental principles of antigen presentation. J Immunol 183(12):7949–7957

    Article  CAS  PubMed  Google Scholar 

  • Lee M et al (2014) Resiquimod, a TLR7/8 agonist, promotes differentiation of myeloid-derived suppressor cells into macrophages and dendritic cells. Arch Pharmacal Res 37(9):1234–1240

    Article  CAS  Google Scholar 

  • Lennerz V et al (2005) The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc Natl Acad Sci USA 102(44):16013–16018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lethe B et al (1997) MAGE-1 expression threshold for the lysis of melanoma cell lines by a specific cytotoxic T lymphocyte. Melanoma Res 7(Suppl 2):S83–S88

    CAS  PubMed  Google Scholar 

  • Linch SN et al (2016) Combination OX40 agonism/CTLA-4 blockade with HER2 vaccination reverses T-cell anergy and promotes survival in tumor-bearing mice. Proc Natl Acad Sci USA 113(3):E319–E327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Łuksza M et al (2017) A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature

    Google Scholar 

  • Lurquin C et al (1989) Structure of the gene of tum- transplantation antigen P91A: the mutated exon encodes a peptide recognized with Ld by cytolytic T cells. Cell 58(2):293–303

    Article  CAS  PubMed  Google Scholar 

  • Manrique SZ et al (2016) Definitive activation of endogenous antitumor immunity by repetitive cycles of cyclophosphamide with interspersed Toll-like receptor agonists. Oncotarget 7(28):42919–42942

    Article  PubMed  PubMed Central  Google Scholar 

  • Margulies M et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057):376–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marty R et al (2017) MHC-I genotype restricts the oncogenic mutational landscape. Cell, 1–12

    Google Scholar 

  • Matsushita H et al (2012) Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482(7385):400–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuzaki J et al (2010) Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci USA 107(17):7875–7880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mcgranahan N et al (2016) Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science (New York, N.Y.) 351(6280):1463–1469

    Google Scholar 

  • Mohan JF, Petzold SJ, Unanue ER (2011) Register shifting of an insulin peptide-MHC complex allows diabetogenic T cells to escape thymic deletion. J Exp Med 208(12):2375–2383. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3256971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moynihan KD et al (2016) Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat Med 22(12):1402–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nathanson T et al (2016) Somatic mutations and neoepitope homology in melanomas treated with CTLA-4 blockade. Cancer Immunol Res, Dec 12, p.Epub ahead of print

    Google Scholar 

  • Ott PA et al (2017) An immunogenic personal neoantigen vaccine for patients with melanoma. Nature

    Google Scholar 

  • Pauken KE et al (2016) Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science (New York, N.Y.) 354(6316):1160–1165

    Google Scholar 

  • Peters B et al (2003) Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors. J Immunology (Baltimore, Md. : 1950) 171(4):1741–1749

    Article  CAS  PubMed  Google Scholar 

  • Pfirschke C et al (2016) Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. Immunity 44(2):343–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popp MW-L, Maquat LE (2013) Organizing principles of mammalian nonsense-mediated mRNA decay. Annu Rev Genet 47:139–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prehn RT, Main JM (1957) Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst 18(6):769–778

    CAS  PubMed  Google Scholar 

  • Rasmussen M et al (2016) Pan-specific prediction of peptide-MHC class I complex stability, a correlate of T cell immunogenicity. Journal of immunology (Baltimore, Md. : 1950) 197(4):1517–1524

    Article  CAS  PubMed  Google Scholar 

  • Rizvi NA et al (2015) Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science (New York, N.Y.) 348(6230):124–128

    Google Scholar 

  • Robbins PF et al (2013) Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med 19(6):747–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Routy B et al (2017) Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science (New York, N.Y.) 3706(November), p.eaan3706

    Google Scholar 

  • Sahin U et al (2017) Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547(7662):222–226

    Article  CAS  PubMed  Google Scholar 

  • Sakuishi K et al (2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207(10):2187–2194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saric T et al (2002) An IFN-gamma-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides. Nat Immunol 3(12):1169–1176

    Article  CAS  PubMed  Google Scholar 

  • Schwanhäusser B et al (2011) Global quantification of mammalian gene expression control. Nature 473(7347):337–342

    Article  PubMed  CAS  Google Scholar 

  • Sharma MD et al (2009) Indoleamine 2,3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes. Blood 113(24):6102–6111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shendure J et al (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science (New York, N.Y.) 309(5741):1728–1732

    Article  CAS  PubMed  Google Scholar 

  • Shukla SA et al (2015) Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nature Biotechnol 33(11):1152–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sibille C et al (1990) Structure of the gene of tum- transplantation antigen P198: a point mutation generates a new antigenic peptide. J Exp Med 172(1):35–45

    Article  CAS  PubMed  Google Scholar 

  • Sistigu A et al (2014) Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med 20(11)

    Google Scholar 

  • Sivan A et al (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science (New York, N.Y.) 350(6264):1084–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder A et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371(23):2189–2199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Somasundaram R et al (2006) Human leukocyte antigen-A2-restricted CTL responses to mutated BRAF peptides in melanoma patients. Can Res 66:3287–3293

    Article  CAS  Google Scholar 

  • Takaku S et al (2010) Blockade of TGF-beta enhances tumor vaccine efficacy mediated by CD8(+) T cells. Int J Cancer 126(7):1666–1674

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tenzer S et al (2005) Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding. Cell Mol Life Sci 62(9):1025–1037

    Article  CAS  PubMed  Google Scholar 

  • Tumeh PC et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528):568–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Türeci O et al (2016) Targeting the heterogeneity of cancer with individualized neoepitope vaccines. Clin Cancer Res 22(8):1885–1896

    Article  PubMed  CAS  Google Scholar 

  • Van Allen EM et al (2015) Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science (New York, N.Y.) 350(6257):207–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Burg SH et al (1996) Immunogenicity of peptides bound to MHC class I molecules depends on the MHC-peptide complex stability. J Immunol 156(9):3308–3314

    PubMed  Google Scholar 

  • Van Rooij N et al (2013) Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J Clin Oncol 31(32):e439–e442

    Article  PubMed  Google Scholar 

  • Verdegaal EME et al (2016) Neoantigen landscape dynamics during human melanoma–T cell interactions. Nature 536(7614):91–95

    Article  CAS  PubMed  Google Scholar 

  • Vétizou M et al (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science (New York, N.Y.) 350(6264):1079–1084

    Google Scholar 

  • Vita R et al (2014) The immune epitope database (IEDB) 3.0. Nucleic Acids Res 43(D1):D405–D412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vormehr M et al (2015) Mutanome engineered RNA immunotherapy : towards patient-centered tumor vaccination. J Immunol Res Article ID 595363:6

    Google Scholar 

  • Vormehr M et al (2016) Mutanome directed cancer immunotherapy. Curr Opin Immunol 39:14–22

    Article  CAS  PubMed  Google Scholar 

  • Wang RF et al (1999) Cloning genes encoding MHC class II-restricted antigens: mutated CDC27 as a tumor antigen. Science (New York, N.Y.) 284(5418):1351–1354

    Google Scholar 

  • Wang S et al (2016) Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8+ T cells. Proc Natl Acad Sci USA 113(46):E7240–E7249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolchok JD et al (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369(2):122–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wölfel T et al (1995) A p 16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science (New York, N.Y.) 269(5228):1281–1284

    Google Scholar 

  • Woller N et al (2015) Viral infection of tumors overcomes resistance to PD-1-immunotherapy by broadening neoantigenome-directed T-cell responses. Mol Ther: The Journal of the American Society of Gene Therapy 10:1630–1640

    Article  CAS  Google Scholar 

  • Yadav M et al (2014) Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515(7528):572–576

    Article  CAS  PubMed  Google Scholar 

  • Zaretsky JM et al (2016) Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 375(9):819–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Kreiter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vormehr, M., Diken, M., Türeci, Ö., Sahin, U., Kreiter, S. (2020). Personalized Neo-Epitope Vaccines for Cancer Treatment. In: Theobald, M. (eds) Current Immunotherapeutic Strategies in Cancer. Recent Results in Cancer Research, vol 214. Springer, Cham. https://doi.org/10.1007/978-3-030-23765-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23765-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23764-6

  • Online ISBN: 978-3-030-23765-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics