Skip to main content

Biological Pretreatment: Need of the Future

  • Chapter
  • First Online:
Water Hyacinth: A Potential Lignocellulosic Biomass for Bioethanol

Abstract

Pretreatment is one of the most significant steps for the production of bioethanol from lignocellulosic feedstocks. Among the various pretreatment strategies known, biological pretreatment seems to be the most promising as it is mild and eco-friendly process and does not generate inhibitor unlike physical and chemical pretreatment methods which are harsh and cost and energy intensive. However, there are a few limitations associated with this strategy to be used on a pilot scale. These are the long residence time for effective delignification and the non-selective nature of fungi which may also attack cellulose and hemicellulose. Nevertheless, the complete potential of biological pretreatment has not been fully exploited yet. Hence, there is a need for extensive research in the field of biological pretreatment for the development of an economically feasible process. This chapter presents an overview of various aspects of biological pretreatment including organisms responsible and mechanism, methods of delignification and various parameters affecting biological pretreatment process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buswell JA, Odier E (1987) Lignin biodegradation. Critic Rev Biotechnol 6:1–60

    Article  CAS  Google Scholar 

  2. Eriksson KEL, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, New York Berlin Heidelberg

    Book  Google Scholar 

  3. Zabel R, Morrell J (1992) Wood microbiology: decay and its prevention. Academic Press, London

    Google Scholar 

  4. Blanchette RA (1995) Degradation of lignocellulose complex in wood. Canad J Botany 73:S999–S1010

    Article  CAS  Google Scholar 

  5. Martinez AT, Speranza M, Ruiz-Duenas FJ, Ferreira P, Camarero S, Guillen F et al (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Inter Microbiol 8:195–204

    CAS  Google Scholar 

  6. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:111

    Article  Google Scholar 

  7. Salvachua D, Prieto A, Lopez-Abelairas M, Lu-Chau T, Martínez AT, Martinez MJ (2011) Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresour Technol 102:7500–7506

    Article  CAS  PubMed  Google Scholar 

  8. Nazarpour F, Abdullah DK, Abdullah N, Zamiri R (2013) Evaluation of biological pretreatment of rubberwood with white rot fungi for enzymatic hydrolysis. Materials 6:2059–2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Camarero S, Garcoa O, Vidal T, Colom J, del Roo JC, Gutierrez A, Gras JM, Monje R, Marttonez MJ, Marttonez AT (2004) Efficient bleaching of non-wood high-quality paper pulp using laccase-mediator system. Enzyme Microb Technol 35:113–120

    Article  CAS  Google Scholar 

  10. Tien K, Kirk TK, Farell RL (1987) Enzymatic combustion. Ann Rev Microbiol 41:465

    Article  Google Scholar 

  11. Singh D, Zeng J, Laskar DD, Deobald L, Hiscox WC, Chen S (2011) Investigation of wheat straw biodegradation by Phanerochaete chrysosporium. Biomass Bioenergy 35:1030–1040

    Article  CAS  Google Scholar 

  12. Zhang J, Ren X, Chen W, Bao J (2012) Biological pretreatment of corn stover by solid state fermentation of Phanerochaete chrysosporium. Front Chem Sci Eng 6(2):146–151

    Article  CAS  Google Scholar 

  13. Atlas RM, Bartha R (1998) Biogeochemical cycling. Microbial ecology, vol 4. An imprint Addison Wesley Longman Inc., Sydney, pp 403–405

    Google Scholar 

  14. Lawson LR, Still CN (1957) The biological decomposition of lignin—a literature survey. Tappi J 40:56A–80A

    CAS  Google Scholar 

  15. Takahashi M (1976) Removal of lignin from partially delignified softwoods by soft rot and white rot fungi. Wood Res 61:1–10

    Google Scholar 

  16. Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi: Production and role in lignin degradation. FEMS Microbiol Rev 13(3):125–135

    Article  CAS  Google Scholar 

  17. Yu H, Guo G, Zhang X, Yan K, Xu C (2009) The effect of biological pretreatment with the selective white-rot fungus Echinodontium taxodii on enzymatic hydrolysis of softwoods and hardwoods. Bioresour Technol 100:5170–5175

    Article  CAS  PubMed  Google Scholar 

  18. Yao W, Nokes SE (2014) Phanerochaete chrysosporium pretreatment of biomass to enhance solvent production in subsequent bacterial solid-substrate cultivation. Biomass Bioenergy 62:100–107

    Article  CAS  Google Scholar 

  19. Srinivasan C, D’’Souza TM, Boominathan K, Reddy CA (1995) Demonstration of Laccase in the white rot basidiomycete Phanerochaete chrysosporium BKM-F1767. Appl Environ Microbiol 61(12):4274–4277

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Glenn KJ, Gold HM (1983) Decolorization of several polymeric dyes by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 45:1741–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bradley C, Wood P, Kearns R, Black B (1989) Biological delignification of wood and straw for ethanol production via solid state culture, Final Report. Montana Department of Natural Resources and Conservation, Montana

    Google Scholar 

  22. Kuhar S, Nair LM, Kuhad RC (2008) Pretreatment of lignocellulosic material with fungi capable of higher lignin degradation and lower carbohydrate degradation improves substrate acid hydrolysis and eventual conversion to ethanol. Canad J Microbiol 54:305–313

    Article  CAS  Google Scholar 

  23. Jian S, Ratna R, Sharma-Shivappa Chinn M, Howell N (2008) Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass Bioenergy 33:88–96

    Google Scholar 

  24. Haider K, Trojanowski J (1980) A comparison of the degradation of 14C-labeled DHP and corn stalk lignins by micro-and macrofungi and bacteria. In: Kirk TK, Higuchi T, Chang H (eds) Lignin biodegradation: microbiology, chemistry and applications, vol 1. CRC Press Inc., USA, pp 111–134

    Google Scholar 

  25. Rodriguez A, Falcon MA, Carnicero A, Perestelo F, Fuente G, Trojanowski J (1996) Laccase activities of Penicillium chrysogenum in relation to lignin degradation. Appl Microbiol Biotechnol 45(3):399–403

    Article  CAS  Google Scholar 

  26. Ferraz A, Baeza J, Duran N (1991) Softwood biodegradation by an ascomycete Chrysonilia sitophila (TFB 27441 strain). Lett Appl Microbiol 13:82–86

    Article  Google Scholar 

  27. Liers C, Ullrich R, Steffen KT, Hatakka A, Hofrichter M (2006) Mineralization of 14C-labelled synthetic lignin and extracellular enzyme activities of the wood-colonizing ascomycetes Xylaria hypoxylon and Xylaria polymorpha. Appl Microbiol Biotechnol 69:573–579

    Article  CAS  PubMed  Google Scholar 

  28. Verkley GJM, Silva M, Wicklow DT, Crous PW (2004) Paraconiothyrium, a new genus to accommodate the mycoparasite Coniothyrium minitans, anamorphs of Paraphaeosphaeria, and four new species. Stud Mycol 50:323–335

    Google Scholar 

  29. Gao H, Wang Y, Zhang W, Wang W, Mu Z (2011) Isolation, identification and application in lignin degradation of an ascomycete GHJ-4. Afric J Biotechnol 10(20):4166–4174

    CAS  Google Scholar 

  30. Reid ID (1985) Biological delignification of aspen wood by solid-state fermentation with the white-rot fungus Merulius tremellosus. Appl Environ Microbiol 50:133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Regalado V, Rodriguez A, Perestelo F, Carnicero A, De La Fuente G, Falcon MA (1997) Lignin degradation and modification by the Soil-Inhabiting Fungus Fusarium proliferatum. Appl Environ Microbiol 63(9):3716–3718

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Li X, Kondo R, Sakai K (2002) Biodegradation of sugarcane bagasse with marine fungus Phlebia sp. MG-60. J Wood Sci 48(2):159–162

    Article  Google Scholar 

  33. Itoh H, Wada M, Honda Y, Kuwahara M, Watanabe T (2003) Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. J Biotechnol 103:273–280

    Article  CAS  PubMed  Google Scholar 

  34. Songulashvili G, Elisashvili V, Penninckx M, Metreveli E, Hadar Y, Aladashvili N, Asatiani M (2005) Bioconversion of plant raw materials in value-added products by Lentinus edodes (Berk.) Singer and Pleurotus sp. Int J Med Mushrooms 7(3):467–468

    Article  Google Scholar 

  35. Mahmoud YAG (2006) Biodegradation of water hyacinth by growing Pleurotus ostreatus and P. sajor-caju and trial for using in production of mushroom spawn. Acta Alimentaria 5(1):63–72

    Article  CAS  Google Scholar 

  36. Zhang X, Yu H, Huang H, Liu Y (2007) Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms. Int J Biodeterior Biodegradation 60:159–164

    Article  CAS  Google Scholar 

  37. Shi J, Chinn MS, Sharma-Shivappa RR (2008) Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium. Bioresour Technol 99:6556–6564

    Article  CAS  PubMed  Google Scholar 

  38. Singh P, Suman A, Tiwari P, Arya N, Gaur A, Shrivastava AK (2008) Biological pretreatment of sugarcane trash for its conversion to fermentable sugars. World Microbiol Biotechnol 24:667–673

    Article  CAS  Google Scholar 

  39. Dias AA, Freitas GS, Marques GS, Sampaio A, Fraga IS, Rodrigues MA, Evtuguin DV, Bezerra RM (2010) Enzymatic saccharification of biologically pre-treated wheat straw with white-rot fungi. Bioresour Technol 101(15):6045–6050

    Article  CAS  PubMed  Google Scholar 

  40. Wan C, Li Y (2010) Microbial delignification of corn stover by Ceriporiopsis subvermispora for improving cellulose digestibility. Enzyme Microb Technol 47:31–36

    Article  CAS  Google Scholar 

  41. Sari E, Syamsiah S, Sulistyo H, Hidayat M (2011) The kinetic of biodegradation lignin in water hyacinth (Eichhornia Crassipes) by Phanerochaete Chrysosporium using solid state fermentation (SSF) method for bioethanol production, Indonesia. Int J Chem Mole Nuc Mater Metallurg Eng 5(6):452–455

    Google Scholar 

  42. Nallapeta S, Nigam VK, Survajahala P, Mohan K (2012) Screening and selection of white rot fungi for biological delignification of agricultural residues. Int J Adv Biotechnol Res 3(4):790–796

    Google Scholar 

  43. Das S, Gangly A, Deya A, Ting Y-P, Chatterjee PK (2014) Characterization of water hyacinth biomass and microbial degradation of the biomass under solid state fermentation using a lignocellulolytic fungus (Alterneria sp. NITDS1). J Chem Biolog Phys Sci 4(3):2279–2293

    CAS  Google Scholar 

  44. Sari E, Syamsiah S, Sulistyo H, Hidayat M (2015) Effect of Mn2 + addition on delignification of water hyacinth using Phanerochaete chrysosporium. Modern Appl Sci 9(2):228

    Article  CAS  Google Scholar 

  45. Machado ADS, Ferraz A (2017) Biological pretreatment of sugarcane bagasse with basidiomycetes producing varied patterns of biodegradation. Bioresour Technol 225:17

    Article  CAS  PubMed  Google Scholar 

  46. Manickam NK, Rajarathinam R, Muthuvelu KS, Senniyappan T (2018) New insight into the effect of fungal mycelia present in the bio-pretreated paddy straw on their enzymatic saccharification and optimization of process parameters. Bioresour Technol 267:291

    Article  CAS  Google Scholar 

  47. Ball AS, Betts WB, McCarthy AG (1989) Degradation of lignin-related compounds by actinomycetes. Appl Environ Microbiol 55:1642–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Colberg PJ (1988) Anaerobic microbial degradation of cellulose, lignin, oligolignols, and monoaromatic lignin derivatives. In: Biology of anaerobic microorganisms. Wiley, New York USA, pp 333–372

    Google Scholar 

  49. Morii H, Nakamiya K, Kinoshita S (1995) Isolation of lignin decoloursing bacterium. J Ferm Bioeng 80:296–299

    Article  CAS  Google Scholar 

  50. Perestelo F, Rodriquez A, Perez R, Carnicero A, Fuente G, Falcon MA (1996) Isolation of a bacterium capable of limited degradation of industrial and labeled natural and synthetic lignins. World J Microbiol Biotechnol 12:111–112

    Article  CAS  PubMed  Google Scholar 

  51. Abd-Elsalam HE, El-Hanafy AA (2009) Lignin biodegradation with ligninolytic bacterial strain and comparison of Bacillus subtilis and Bacillus sp. isolated from Egyptian Soil. American-Eurasian J Agri Environ Sci 5(1):39–44

    CAS  Google Scholar 

  52. Amin FR, Khalid H, Zhang H, Rahman S, Zhang R, Liu G, Chen C (2017) Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Expr 7:72

    Article  CAS  Google Scholar 

  53. Ramachandra M, Crawford DL, Hertel G (1988) Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Appl Environ Microbiol 54:3057–3063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chandra R, Raj A, Purohit HJ, Kapley A (2007) Characterisation and optimisation of three potential aerobic bacterial strains for kraft lignin degradation from pulp paper waste. Chemosphere 67:839–846

    Article  CAS  PubMed  Google Scholar 

  55. Abd-Elsalam HE, El-Hanafy AA (2009) Lignin biodegradation with ligninolytic bacterial strain and comparison of Bacillus subtilis and Bacillus sp. isolated from Egyptian soil. American-Eurasian J Agri Environ Sci 5:39–44

    CAS  Google Scholar 

  56. Bandounas L, Wierckx NJP, Winde JH, Ruijssenaars HJ (2011) Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential. BMC Biotechnol 11:94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang YS, Zhou JT, Lu H, Yuan YL, Zhao LH (2012) Isolation and characterization of Streptomyces sp. strains F-6 and F-7 capable of decomposing alkali lignin. Environ Technol 33:2603–2609

    Article  CAS  PubMed  Google Scholar 

  58. Shi Y, Chai L, Tang C, Yang Z, Zheng Y, Chen Y, Jing Q (2013) Biochemical investigation of kraft lignin degradation by Pandoraea sp. B-6 isolated from bamboo slips. Bioproc Biosys Eng 36:1957–1965

    Article  CAS  Google Scholar 

  59. Chandra R, Bharagava RN (2013) Bacterial degradation of synthetic and kraft lignin by axenic and mixed culture and their metabolic products. J Environ Biology 34:991–999

    CAS  Google Scholar 

  60. Chang YC, Choi D, Takamizawa K, Kikuchi S (2014) Isolation of Bacillus sp. strains capable of decomposing alkali lignin and their application in combination with lactic acid bacteria for enhancing cellulase performance. Bioresour Technol 152:429–436

    Article  CAS  PubMed  Google Scholar 

  61. Lu C, Wang H, Luo Y, Guo L (2010) An efficient system for pre-delignification of gramineous biofuel feedstock in vitro: application of a laccase from Pycnoporus sanguineus H275. Process Biochem 45:1141–1147

    Article  CAS  Google Scholar 

  62. Rolz C, Leon R, Arriola MC, Cabrera S (1986) Biodelignification of lemon grass and citronella bagasse by white rot fungi. Appl Environ Microbiol 52(4):607–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bhandari KS, Bist V (1989) Effect of Coriolus versicolor on physicochemical properties of Eucalyptus globules wood. Wood Sci Technol 23:163–169

    CAS  Google Scholar 

  64. Tuomela M, Oivanen P, Hatakka A (2002) Degradation of synthetic [14C] lignin by various white-rot fungi in soil. Soil Biology Biochem 34(11):1613–1620

    Article  CAS  Google Scholar 

  65. Luna ML, Murace MA, Keil GD, Otano ME (2004) Patterns of decay caused by Pycnoporus sanguineus and Ganoderma lucidum (Aphyllophorales) in poplar wood. IAWA Journal 25(4):425–433

    Article  Google Scholar 

  66. Breccia JD, Sineriz F, Bettucci L, Piaggio M (2004) Degradation of sugarcane by several white rot fungi. Acta Biotechnol 17:177–184

    Article  Google Scholar 

  67. Tapia C, Jimenez I, Medina J, Gonzalez J, Carmona R (2005) Evaluation of the lignolytic effect of the white rot fungi Ceriporiopsis sp., Pleurotus sp. and Phlebia sp. on industrial Pinus radiate logs. J Wood Chem Technol 25(1–2):81–94

    Article  CAS  Google Scholar 

  68. Zeng GM, Shi JG, Yuan XZ, Liu J, Zhang ZB, Huang GH, Li JB, Xi BD, Liu HL (2006) Effects of tween 80 and rhamnolipid on the extracellular enzymes of Penicillium simplicissimum isolated from compost. Enzyme Microb Technol 39:1451–1456

    Article  CAS  Google Scholar 

  69. Beek TAV, Kuster B, Claassen FW, Tienvieri T, Beataud F (2007) Fungal biotreatment of spruce wood with Trametes versicolor for pitch control: Influence on extractive contents, pulping process parameters, paper quality and effluent toxicity. Bioresour Technol 98(2):302–311

    Article  PubMed  CAS  Google Scholar 

  70. Gupta R, Mehta G, Khasa YP, Kuhad RC (2011) Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation 22:797–804

    Article  CAS  PubMed  Google Scholar 

  71. Geethanjali PA (2012) A study on lignin degrading fungi isolated from the litter of evergreen forests of Kodagu, Karnataka. Int J Environ Sci 2(4):2034–2039

    CAS  Google Scholar 

  72. Mukherjee R, Nandi B (2004) Improvement of in vitro digestibility through biological treatment of water hyacinth biomass by two Pleurotus sp. Int Biodeterior Biodegradation 53(1):7–12

    Article  Google Scholar 

  73. Ferraz A, Cordova AM, Machuca A (2003) Wood biodegradation and enzyme production by Ceriporiopsis subvermispora during solid state fermentation of Eucalyptus grandis. Enzyme Microb Technol 32:59–65

    Article  CAS  Google Scholar 

  74. Sharma RK, Arora DS (2010) Production of lignocellulosic enzymes and enhancement of invitro digestibility during solid state fermentation of wheat straw by Phlebia floridensis. Bioresour Technol 101:9248–9253

    Article  CAS  PubMed  Google Scholar 

  75. Xu C, Ma F, Zhang X (2009) Lignocellulose degradation and enzyme production by Irpex lacteus CD2 during solid-state fermentation of corn stover. J Biosci Bioeng 108:372–375

    Article  CAS  PubMed  Google Scholar 

  76. Khuong LD, Kondo R, Leon RD, Anh TK, Meguro S, Shimizu K, Kamei I (2014) Effect of chemical factors on integrated fungal fermentation of sugarcane bagasse for ethanol production by a white-rot fungus, Phlebia sp. MG-60. Bioresour Technol 167:33–40

    Article  CAS  Google Scholar 

  77. Maijala P (2005) Co-culturing of white rot fungi on wood—potential in biopulping. In: Seminar cum workshop on forest pathology

    Google Scholar 

  78. Chi Y, Hatakka A, Maijala P (2007) Can co-culturing of two white rot fungi increase lignin degradation and the production of lignin degrading enzyme. Int Biodeterior Biodegradation 59(1):32–39

    Article  CAS  Google Scholar 

  79. Dwivedi P, Vivekanand V, Pareek N, Sharma A, Singh RP (2010) Bleach enhancement of mixed wood pulp by xylanase-laccase concoction derived through co-culture strategy. Appl Biochem Biotechnol 160(1):255–268

    Article  CAS  PubMed  Google Scholar 

  80. Kuila A, Mukhopadhyay M, Tuli DK, Banerjee R (2011) Accessibility of enzymatically delignified Bambusa bambos for efficient hydrolysis at minimum cellulose loading: an optimization study. Enzyme Res 1–8

    Article  CAS  Google Scholar 

  81. Moniruzzaman M, Ono T (2012) Ionic liquid assisted enzymatic delignification of wood biomass: a new “green” and efficient approach for isolating of cellulose fibers. Biochem Eng J 60:156–160

    Article  CAS  Google Scholar 

  82. Wang F, Xie H, Chen W, Wang E, Du F, Song A (2013) Biological pretreatment of corn stover with ligninolytic enzyme for high efficient enzymatic hydrolysis. Bioresour Technol 144:572–578

    Article  CAS  PubMed  Google Scholar 

  83. Babot ED, Rico A, Rencoret J, Kalum L, Lund H, Romero J, Del Rio JC, Martinez AT, Gutierrez A (2011) Towards industrially-feasible delignification and pitch removal by treating paper pulp with Myceliophthora thermophila laccase and a phenolic mediator. Bioresour Technol 102:6717–6722

    Article  CAS  PubMed  Google Scholar 

  84. Chen Q, Marshall MN, Geib SM, Tien M, Richard TL (2012) Effects of laccase on lignin depolymerization and enzymatic hydrolysis of ensiled corn stover. Bioresour Technol 117:186–192

    Article  CAS  PubMed  Google Scholar 

  85. Qiu W, Chen H (2012) Enhanced the enzymatic hydrolysis efficiency of wheat straw after combined steam explosion and laccase pretreatment. Bioresour Technol 118:8–12

    Article  CAS  PubMed  Google Scholar 

  86. Placido J, Sergio Capareda S (2014) Analysis of alkali ultrasonication pretreatment in bioethanol production from cotton gin trash using FT-IR spectroscopy and principal component analysis. Bioresour Bioprocess 1:23

    Article  Google Scholar 

  87. Kamei I, Hirota Y, Meguro S (2012) Integrated delignification and simultaneous saccharification and fermentation of hard wood by a white-rot fungus, Phlebia sp. MG-60. Bioresour Technol 126:137–141

    Article  CAS  PubMed  Google Scholar 

  88. Ma K, Ruan Z (2015) Production of a lignocellulolytic enzyme system for simultaneous bio-delignification and saccharification of corn stover employing co-culture of fungi. Bioresour Technol 175:586–593

    Article  CAS  PubMed  Google Scholar 

  89. Mate DM, Alcalde M (2015) Laccase engineering: from rational design to directed evolution. Biotechnol Adv 33:25–40

    Article  CAS  PubMed  Google Scholar 

  90. Elisashvili V, Penninckx M, Kachlishvili E, Asatiani M, Kvesitadze G (2006) Use of Pleurotus dryinus for lignocellulolytic enzymes production in submerged fermentation of mandarin peels and tree leaves. Enzyme Microb Technol 38:998–1004

    Article  CAS  Google Scholar 

  91. Kaal EEJ, Field JA, Joyce TW (1995) Increasing ligninolytic enzymatic activities in several white rot basidiomycetes by nutrient sufficient media. Bioresour Technol 59:133

    Article  Google Scholar 

  92. Ardon O, Kerem Zohar, Hadar Y (1996) Enhacement of laccase activity in liquid cultures of the lignolytic fungus Pleurotus ostreatus by cotton stalk extract. J Biotechnol 51:201–207

    Article  CAS  Google Scholar 

  93. Patel H, Gupte A, Gupte S (2009) Effect of different culture conditions and inducers on production of laccase by a Basidiomycete fungal isolate Pleurotus ostreatus HP-1 under solid state fermentation. BioResources 4(1):268–284

    CAS  Google Scholar 

  94. Zhang Z, Xia L, Wang F, Lv P, Zhu M, Li J, Chen K (2015) Lignin degradation in corn stalk by combined method of H2O2 hydrolysis and Aspergillus oryzae CGMCC5992 liquid-state fermentation. Biotechnol Biofuels 8:183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Mikiashvili N, Wasser SP, Nevo E, Elisashvili V (2006) Effects of carbon and nitrogen sources on Pleurotus ostreatus ligninolytic enzyme activity. World J Microbiol Biotechnol 22:999–1002

    Article  CAS  Google Scholar 

  96. Dorado J, Field J, Almendros G, Sierra-Alvarez R (2001) Nitrogen-removal with protease as a method to improve the selective delignification of hemp stemwood by the white-rot fungus Bjerkandera sp. strain BOS55. Appl Microbiol Biotechnol 57:205–211

    Article  CAS  PubMed  Google Scholar 

  97. Isroi I, Millati R, Syamsiah S et al (2011) Biological treatment of lignocelluloses with white-rot fungi and its applications: a review. BioResources 6:5224–5259

    Google Scholar 

  98. Ruttimann-Johnson C, Salas L, Vicuna R, Kirk TK (1993) Extracellular enzyme production and synthetic lignin mineralization by Ceriporiopsis subvermispora. Appl Environ Microbiol 56:1792–1797

    Article  Google Scholar 

  99. Reid ID (1989) Solid-state fermentations for biological delignication. Enzyme Microb Technol 11:786–803

    Article  CAS  Google Scholar 

  100. Messner K, Koller K, Wall MB, Akhtar M, Scott GM (1998) Fungal treatment or wood chips for chemical pulping. In: Environmental friendly technologies for the pulp and paper industry. Wiley, Inc. New York, pp 385–419

    Google Scholar 

  101. Belinky PA, Flikshtein N, Lechenko S, Gepstein S, Dosoretz CG (2003) Reactive oxygen species and induction of lignin peroxidase in Phanerochaete chrysosporium. Appl Environ Microbiol 69:6500–6506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fujian X, Hongzhang C, Zuohu L (2001) Solid-state production of lignin peroxidase (LiP) and manganese peroxidase (MnP) by Phanerochaete chrysosporium using steam-exploded straw as substrate. Bioresour Technol 80:149–151

    Article  CAS  PubMed  Google Scholar 

  103. Asgher M, Ahmad Z, Iqbal HMN (2013) Alkali and enzymatic delignification of sugarcane bagasse to expose cellulose polymers for saccharification and bio-ethanol production. Ind Crop Prod 44:488–495

    Article  CAS  Google Scholar 

  104. Zadrazil F, Brunnert H (1982) Solid state fermentation of lignocellulose containing plant residues with Sporotrichum pulmerulentum Nov. and Dichomitus squalens (Karst.) reid. Eur J Appl Microbiol Biotechnol 16:45–51

    Article  CAS  Google Scholar 

  105. Agosin E, Daudin JJ, Odier E (1985) Screening of white-rot fungi on (14C) lignin-labelled and (14C) whole-labelled wheat straw. Appl Microbiol Biotechnol 22:132–138

    Article  CAS  Google Scholar 

  106. Levonen-Munoz E, Bone DH, Daugulis AJ (1983) Solid state fermentation and fractionation of oat straw by basidiomycetes. Eur J Appl Microbiol Biotechnol 18:120

    Article  CAS  Google Scholar 

  107. Sahni N, Phutela UG (2013) Comparative profile of paddy straw pretreated with standard and isolated lignocellulolytic fungal cultures. J Yeast Fungal Res 4(7):92–97

    CAS  Google Scholar 

  108. Locci E, Laconi S, Pompei R, Scano P, Lai A, Marincola FC (2008) Wheat bran biodegradation by Pleurotus ostreatus: a solid-state Carbon-13 NMR study. Bioresour Technol 99:4279–4284

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuja Sharma .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, A., Aggarwal, N.K. (2020). Biological Pretreatment: Need of the Future. In: Water Hyacinth: A Potential Lignocellulosic Biomass for Bioethanol. Springer, Cham. https://doi.org/10.1007/978-3-030-35632-3_5

Download citation

Publish with us

Policies and ethics