Skip to main content

Uncertainty Characterization and Modeling

  • Chapter
  • First Online:
Aerospace System Analysis and Optimization in Uncertainty

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 156))

  • 824 Accesses

Abstract

The design process of complex systems such as aerospace vehicles involves physics-based and mathematical models. A model is a representation of the reality through a set of simulations and/or experimentations under appropriate assumptions. Due to simplification hypotheses, lack of knowledge, and inherent stochastic quantities, models represent reality with uncertainties. These uncertainties are quite large at the early phases of the design process. The term uncertainty has various definitions and taxonomies depending on the research communities. The concept of uncertainty is related to alternative concepts such as imperfection, ignorance, ambiguity, imprecision, vagueness, incompleteness, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ayyub, B. M. and Klir, G. J. (2006). Uncertainty modeling and analysis in engineering and the sciences. Chapman and Hall/CRC.

    Book  Google Scholar 

  • Baudrit, C. and Dubois, D. (2006). Practical representations of incomplete probabilistic knowledge. Computational Statistics & Data Analysis, 51(1):86–108.

    Article  MathSciNet  Google Scholar 

  • Beer, M., Ferson, S., and Kreinovich, V. (2013). Imprecise probabilities in engineering analyses. Mechanical Systems and Signal Processing, 37(1–2):4–29.

    Article  Google Scholar 

  • Bouchon-Meunier, B. and Nguyen, H. T. (1996). Les incertitudes dans les systèmes intelligents (in French). Presses universitaires de France.

    MATH  Google Scholar 

  • Boyd, S. and Vandenberghe, L. (2004). Convex optimization. Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Bronner, G. (2015). L’incertitude. Presses Universitaires de France.

    Google Scholar 

  • Chen, S. X. and Huang, T.-M. (2007). Nonparametric estimation of copula functions for dependence modelling. Canadian Journal of Statistics, 35(2):265–282.

    Article  MathSciNet  Google Scholar 

  • Choquet, G. (1954). Theory of capacities. In Annales de l’institut Fourier, volume 5, pages 131–295.

    Google Scholar 

  • D’Agostino, R. (1986). Goodness-of-fit-techniques. Routledge.

    MATH  Google Scholar 

  • DeLaurentis, L. and Mavris, D. (2000). Uncertainty modeling and management in multidisciplinary analysis and synthesis. In 38th Aerospace sciences meeting and exhibit, Reno, NV, USA.

    Google Scholar 

  • Dempster, A. P. (1967). Upper and lower probability inferences based on a sample from a finite univariate population. Biometrika, 54(3–4):515–528.

    Article  MathSciNet  Google Scholar 

  • Der Kiureghian, A. and Ditlevsen, O. (2009). Aleatory or epistemic? does it matter? Structural Safety, 31(2):105–112.

    Article  Google Scholar 

  • Du, X., Sudjianto, A., and Huang, B. (2005). Reliability-based design with the mixture of random and interval variables. Journal of Mechanical Design, 127(6):1068–1076.

    Article  Google Scholar 

  • Dubois, D. and Prade, H. (1998). Possibility theory: qualitative and quantitative aspects. In Quantified representation of uncertainty and imprecision, pages 169–226. Springer.

    Google Scholar 

  • Dubois, D. and Prade, H. (2012). Possibility theory. In Computational complexity, pages 2240–2252. Springer.

    Google Scholar 

  • Efron, B. and Tibshirani, R. J. (1994). An introduction to the bootstrap. CRC press, Boca Raton, USA.

    Book  Google Scholar 

  • Ferson, S., Ginzburg, L., and Akçakaya, R. (1996). Whereof one cannot speak: when input distributions are unknown. Risk Analysis.

    Google Scholar 

  • Ferson, S., Kreinovich, V., Grinzburg, L., Myers, D., and Sentz, K. (2015). Constructing probability boxes and Dempster-Shafer structures. Technical report, Sandia National Laboratories, Albuquerque, NM, USA.

    Google Scholar 

  • Ferson, S., Kreinovich, V., Hajagos, J., Oberkampf, W., and Ginzburg, L. (2007). Experimental uncertainty estimation and statistics for data having interval uncertainty. Sandia National Laboratories, Report SAND2007–0939, 162.

    Google Scholar 

  • Halmos, P. R. (1950). Measure theory. 1950. New York.

    Google Scholar 

  • Heidenreich, N.-B., Schindler, A., and Sperlich, S. (2013). Bandwidth selection for kernel density estimation: a review of fully automatic selectors. AStA Advances in Statistical Analysis, 97(4):403–433.

    Article  MathSciNet  Google Scholar 

  • Inagaki, T. (1991). Interdependence between safety-control policy and multiple-sensor schemes via Dempster-Shafer theory. IEEE Transactions on Reliability, 40(2):182–188.

    Article  MathSciNet  Google Scholar 

  • Izenman, A. J. (1991). Review papers: Recent developments in nonparametric density estimation. Journal of the American Statistical Association, 86(413):205–224.

    MathSciNet  MATH  Google Scholar 

  • Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical review, 106(4):620.

    Article  MathSciNet  Google Scholar 

  • Joe, H., Li, H., and Nikoloulopoulos, A. K. (2010). Tail dependence functions and vine copulas. Journal of Multivariate Analysis, 101(1):252–270.

    Article  MathSciNet  Google Scholar 

  • Jousselme, A.-L., Maupin, P., and Bossé, É. (2003). Uncertainty in a situation analysis perspective. In 6th International Conference of Information Fusion, Cairns, Australia.

    Google Scholar 

  • Joyce, J. M. (2011). Kullback-Leibler divergence. In International encyclopedia of statistical science, pages 720–722. Springer.

    Google Scholar 

  • Klir, G. J. (2005). Uncertainty and information: foundations of generalized information theory. John Wiley & Sons.

    Book  Google Scholar 

  • Klir, G. J. and Wierman, M. J. (2013). Uncertainty-based information: elements of generalized information theory, volume 15. Physica.

    Google Scholar 

  • Kolmogorov, A. N. (1950). Foundations of the Theory of Probability. Chelsea, New York, First published in German in 1933.

    Google Scholar 

  • Krause, P. and Clark, D. (2012). Representing uncertain knowledge: an artificial intelligence approach. Springer Science & Business Media.

    Google Scholar 

  • Laplace, P. (1810). Sur les approximations des formules qui sont fonctions de tres grands nombres et sur leur application aux probabilites (in French). Œuvres complètes, 12:301–345.

    Google Scholar 

  • Moon, T. K. (1996). The expectation-maximization algorithm. IEEE Signal processing magazine, 13(6):47–60.

    Article  Google Scholar 

  • Moore, R. E., Kearfott, R. B., and Cloud, M. J. (2009). Introduction to interval analysis, volume 110. SIAM.

    Book  Google Scholar 

  • Negoita, C., Zadeh, L., and Zimmermann, H. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems, 1(3–28):61–72.

    MathSciNet  Google Scholar 

  • Nelsen, R. B. (2007). An introduction to copulas. Springer Science & Business Media.

    Google Scholar 

  • Sahu, P. K., Pal, S. R., and Das, A. K. (2015). Estimation and inferential statistics. Springer India, New Delhi, India.

    Google Scholar 

  • Shafer, G. (1976). A mathematical theory of evidence, volume 42. Princeton university press.

    MATH  Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27:379–423.

    Article  MathSciNet  Google Scholar 

  • Silverman, B. W. (1986). Density estimation for statistics and data analysis. In Monographs on Statistics and Applied Probability. London: Chapman and Hall.

    Google Scholar 

  • Smithson, M. (2012). The many faces and masks of uncertainty. In Uncertainty and risk, pages 31–44. Routledge.

    Google Scholar 

  • Thunnissen, D. P. (2005). Propagating and mitigating uncertainty in the design of complex multidisciplinary systems. PhD thesis, California Institute of Technology.

    Google Scholar 

  • Tijms, H. (2012). Understanding probability. Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Troffaes, M. C., Miranda, E., and Destercke, S. (2013). On the connection between probability boxes and possibility measures. Information Sciences, 224:88–108.

    Article  MathSciNet  Google Scholar 

  • Walley, P. (1991). Statistical reasoning with imprecise probabilities. London: Chapman & Hall.

    Book  Google Scholar 

  • Walley, P. (2000). Towards a unified theory of imprecise probability. International Journal of Approximate Reasoning, 24(2–3):125–148.

    Article  MathSciNet  Google Scholar 

  • Williamson, R. C. and Downs, T. (1990). Probabilistic arithmetic. i. numerical methods for calculating convolutions and dependency bounds. International journal of approximate reasoning, 4(2):89–158.

    Article  MathSciNet  Google Scholar 

  • Yager, R. R. (1987). On the Dempster-Shafer framework and new combination rules. Information sciences, 41(2):93–137.

    Article  MathSciNet  Google Scholar 

  • Zadeh, L. A. (1999). Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems, 100(1):9–34.

    Article  MathSciNet  Google Scholar 

  • Zadeh, L. A. et al. (1965). Fuzzy sets. Information and control, 8(3):338–353.

    Article  MathSciNet  Google Scholar 

  • Zhang, X. and Pandey, M. D. (2013). Structural reliability analysis based on the concepts of entropy, fractional moment and dimensional reduction method. Structural Safety, 43:28–40.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brevault, L., Morio, J., Balesdent, M. (2020). Uncertainty Characterization and Modeling. In: Aerospace System Analysis and Optimization in Uncertainty. Springer Optimization and Its Applications, vol 156. Springer, Cham. https://doi.org/10.1007/978-3-030-39126-3_2

Download citation

Publish with us

Policies and ethics