Skip to main content

Multi-Fidelity for MDO Using Gaussian Processes

  • Chapter
  • First Online:
Aerospace System Analysis and Optimization in Uncertainty

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 156))

Abstract

The challenges of handling uncertainties within an MDO process have been discussed in Chapters 6 and 7. Related concepts to multi-fidelity are introduced in this chapter. Indeed, high-fidelity models are used to represent the behavior of a system with an acceptable accuracy. However, these models are computationally intensive and they cannot be repeatedly evaluated, as required in MDO. Low-fidelity models are more suited to the early design phases as they are cheaper to evaluate. But they are often less accurate because of simplifications such as linearization, restrictive physical assumptions, dimensionality reduction, etc. Multi-fidelity models aim at combining models of different fidelities to achieve the desired accuracy at a lower computational cost. In Section 8.2, the connection between MDO, multi-fidelity, and cokriging is made through a review of past works and system representations of code architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allaire, D., Willcox, K., and Toupet, O. (2010). A Bayesian-based approach to multifidelity multidisciplinary design optimization. In 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, page 9183.

    Google Scholar 

  • Alvarez, M. A. and Lawrence, N. D. (2011). Computationally efficient convolved multiple output gaussian processes. Journal of Machine Learning Research, 12(May):1459–1500.

    MathSciNet  MATH  Google Scholar 

  • Alvarez, M. A., Rosasco, L., Lawrence, N. D., et al. (2012). Kernels for vector-valued functions: A review. Foundations and Trends® in Machine Learning, 4(3):195–266.

    Article  Google Scholar 

  • Boyle, P. and Frean, M. (2005). Dependent gaussian processes. In Advances in neural information processing systems, pages 217–224.

    Google Scholar 

  • Christensen, D. E. (2012). Multifidelity methods for multidisciplinary design under uncertainty. PhD thesis, Massachusetts Institute of Technology.

    Google Scholar 

  • Conti, S. and O’Hagan, A. (2010). Bayesian emulation of complex multi-output and dynamic computer models. Journal of statistical planning and inference, 140(3):640–651.

    Article  MathSciNet  Google Scholar 

  • Cressie, N. (1992). Statistics for spatial data. Terra Nova, 4(5):613–617.

    Article  Google Scholar 

  • Fernández-Godino, M. G., Park, C., Kim, N.-H., and Haftka, R. T. (2016). Review of multi-fidelity models. arXiv preprint arXiv:1609.07196.

    Google Scholar 

  • Forrester, A. I., Sóbester, A., and Keane, A. J. (2007). Multi-fidelity optimization via surrogate modelling. Proceedings of the royal society a: mathematical, physical and engineering sciences, 463(2088):3251–3269.

    Article  MathSciNet  Google Scholar 

  • Fricker, T. E., Oakley, J. E., and Urban, N. M. (2013). Multivariate gaussian process emulators with nonseparable covariance structures. Technometrics, 55(1):47–56.

    Article  MathSciNet  Google Scholar 

  • Goovaerts, P. et al. (1997). Geostatistics for natural resources evaluation. Oxford University Press on Demand.

    Google Scholar 

  • Huang, D., Allen, T. T., Notz, W. I., and Miller, R. A. (2006). Sequential kriging optimization using multiple-fidelity evaluations. Structural and Multidisciplinary Optimization, 32(5):369–382.

    Article  Google Scholar 

  • Jones, D. R., Schonlau, M., and Welch, W. J. (1998). Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13(4):455–492.

    Article  MathSciNet  Google Scholar 

  • Journel, A. G. and Huijbregts, C. J. (1978). Mining geostatistics, volume 600. Academic press London.

    Google Scholar 

  • Keane, A. J. (2012). Cokriging for robust design optimization. AIAA journal, 50(11):2351–2364.

    Article  Google Scholar 

  • Kennedy, M. C. and O’Hagan, A. (2000). Predicting the output from a complex computer code when fast approximations are available. Biometrika, 87(1):1–13.

    Article  MathSciNet  Google Scholar 

  • Laurent, L., Le Riche, R., Soulier, B., and Boucard, P.-A. (2019). An overview of gradient-enhanced metamodels with applications. Archives of Computational Methods in Engineering, 26(1):61–106.

    Article  MathSciNet  Google Scholar 

  • Le Gratiet, L. (2013). Multi-fidelity Gaussian process regression for computer experiments. PhD thesis, Université Paris-Diderot-Paris VII.

    Google Scholar 

  • March, A. and Willcox, K. (2012). Multifidelity approaches for parallel multidisciplinary optimization. In 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, page 5688.

    Google Scholar 

  • Marque-Pucheu, S., Perrin, G., and Garnier, J. (2017). Efficient sequential experimental design for surrogate modeling of nested codes. arXiv preprint arXiv:1712.01620.

    Google Scholar 

  • Mehmani, A., Chowdhury, S., Tong, W., and Messac, A. (2015). Adaptive switching of variable-fidelity models in population-based optimization. In Engineering and Applied Sciences Optimization, pages 175–205. Springer.

    Google Scholar 

  • Micchelli, C. A. and Pontil, M. (2005). Kernels for multi–task learning. In Advances in neural information processing systems, pages 921–928.

    Google Scholar 

  • Myers, D. E. (1982). Matrix formulation of co-kriging. Journal of the International Association for Mathematical Geology, 14(3):249–257.

    Article  MathSciNet  Google Scholar 

  • Paiva, R. M., D. Carvalho, A. R., Crawford, C., and Suleman, A. (2010). Comparison of surrogate models in a multidisciplinary optimization framework for wing design. AIAA Journal, 48(5):995–1006.

    Google Scholar 

  • Peherstorfer, B., Willcox, K., and Gunzburger, M. (2018). Survey of multifidelity methods in uncertainty propagation, inference, and optimization. SIAM Review, 60(3):550–591.

    Article  MathSciNet  Google Scholar 

  • Perdikaris, P., Venturi, D., Royset, J., and Karniadakis, G. (2015). Multi-fidelity modelling via recursive co-kriging and Gaussian–Markov random fields. Proc. R. Soc. A, 471(2179):20150018.

    Article  Google Scholar 

  • Sacher, M. (2018). Méthodes avancées d’optimisation par méta-modèles–Applicationà la performance des voiliers de compétition. PhD thesis, Paris, ENSAM.

    Google Scholar 

  • Santner, T. J., Williams, B. J., Notz, W., and Williams, B. J. (2003). The design and analysis of computer experiments, volume 1. Springer.

    Book  Google Scholar 

  • Seeger, M., Teh, Y.-W., and Jordan, M. (2005). Semiparametric latent factor models. Technical report.

    Google Scholar 

  • Sellar, R., Batill, S., and Renaud, J. (1996). Response surface based, concurrent subspace optimization for multidisciplinary system design. In 34th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA.

    Google Scholar 

  • Simpson, T. W., Mauery, T. M., Korte, J. J., and Mistree, F. (2001). Kriging models for global approximation in simulation-based multidisciplinary design optimization. AIAA Journal, 39(12):2233–2241.

    Article  Google Scholar 

  • Sobieski, I. P. and Kroo, I. M. (2000). Collaborative optimization using response surface estimation. AIAA Journal, 38(10):1931–1938.

    Article  Google Scholar 

  • Teckentrup, A. L., Jantsch, P., Webster, C. G., and Gunzburger, M. (2015). A multilevel stochastic collocation method for partial differential equations with random input data. SIAM/ASA Journal on Uncertainty Quantification, 3(1):1046–1074.

    Article  MathSciNet  Google Scholar 

  • Wang, X., Liu, Y., Sun, W., Song, X., and Zhang, J. (2018). Multidisciplinary and multifidelity design optimization of electric vehicle battery thermal management system. Journal of Mechanical Design, 140(9):094501.

    Article  Google Scholar 

  • Zadeh, P. M. and Toropov, V. (2002). Multi-fidelity multidisciplinary design optimization based on collaborative optimization framework. In 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Atlanta, GA, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolphe Le Riche .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garland, N., Le Riche, R., Richet, Y., Durrande, N. (2020). Multi-Fidelity for MDO Using Gaussian Processes. In: Aerospace System Analysis and Optimization in Uncertainty. Springer Optimization and Its Applications, vol 156. Springer, Cham. https://doi.org/10.1007/978-3-030-39126-3_8

Download citation

Publish with us

Policies and ethics