Skip to main content

Transport Category Airplane Fuselage Master Geometry Parametrical Modeling Method

  • Conference paper
  • First Online:
Mathematical Modeling and Simulation of Systems (MODS'2020) (MODS 2020)

Abstract

The analysis of transport category airplane fuselage design features and master geometry modeling methods showed that the methods should be updated to provide quicker automated editing of the model as well as improvement of its quality and accuracy. Transport category airplane fuselage master geometry parametrical modeling method was developed basing on specification requirements, general view drawing, generalised theoretical drawing and fuselage parameters matrix. The method takes in account main geometrical parameters and allows their variation in wide range with automatic model update for providing required characteristics. Proposed method is verified using data of airplanes made by SC “Antonov”. Fuselage parameters influence on its volume and washed surface area was studied. Fuselage master geometry parametrical modeling method implementation in frontend design of passenger airplane for local airlines allowed quick geometrical characteristics determination on early design stage and provide meeting the requirements of specification and aviation regulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grebenikov, A.G.: Metodologiya integrirovannogo proyektirovaniya i modelirovaniya sbornykh samoletnykh konstruktsiy. Methodology of integrated design and modeling of assembled aircraft structures. National aerospace university Kharkov Aviation Institute, Kharkov (2006)

    Google Scholar 

  2. Aviation Rules. Airworthiness standards transport category aircraft. Part 25. IAC (2014)

    Google Scholar 

  3. Balabuev, P.V., Matusevich, V.I.: Strategija i praktika ANTK «Antonov» v sozdanii samoletov «AN» na osnove polnogo jelektronnogo opredelenija izdelija. Strategy and Practice of AN Airplanes Creation Based on Full Electronic Product Definition. Informacionnye tehnologii v naukoemkom mashinostroenii: Komp’juternoe obespechenie industrial’nogo biznesa, pp. 84–97 (2001)

    Google Scholar 

  4. Matusevich, V.I., Bojko, Ju.R.: Koncepcija i plany kompleksnogo reshenija zadach avtomatizi-rovannogo proektirovanija, tehnologicheskoj podgotovki i upravlenija samoletostroitel’nym proizvodstvom. The concept and plans for a comprehensive solution of the computer-aided design, technological preparation and management of aircraft manufacturing problems. Tehnologicheskie sistemy 1, 77–82 (1999)

    Google Scholar 

  5. Bratuhina, A.G., Ivanova, Ju.L.: Sovremennye tehnologii aviastroenija. Modern aircraft manufacturing technology. Mashinostroenie, Moscow (1999)

    Google Scholar 

  6. Geremes, Ju.N., Grebenikov, A.G., Gumennyj, A.M.: Koncepcija sozdanija passazhirskogo samoljota dlja mestnyh vozdushnyh linij. The concept of passenger aircraft for local airlines creating. Otkrytye informacionnye i komp’juternye integrirovannye tehnologii 47, 20–33 (2010)

    Google Scholar 

  7. Grebenikov, A.G., Gumennyj, A.M., Serdjukov, A.A., Chumak, A.S.: Optimizacija geometricheskih parametrov samoleta mestnyh vozdushnyh linij. Optimization of local airlines aircraft geometric parameters. In: Mizhnarodna naukovo-tehnichna konferencija on Problemi stvorennja ta zabezpechennja zhittєvogo ciklu aviacijnoї tehniki, p. 12. National Aerospace University Kharkov Aviation Institute, Kharkov (2011)

    Google Scholar 

  8. Torenbeek, E.: Advanced Aircraft Design: Conceptual Design Analysis and Optimization of Subsonic Civil Airplanes. Delft University of Technology, Netherlands (2013)

    Book  Google Scholar 

  9. Roskam, J., Anemaat, W.A.: General aviation aircraft design methodology in a PC environment. SAE International (1996)

    Google Scholar 

  10. Grebenikov, A.G., Zheldochenko, V.N., Kobylyanskiy, A.A.: Osnovy obshchego proyektirovaniya samoletov s gazoturbinnymi dvigatelyami. Fundamentals of the general design of aircraft with gas turbine engines. Part 2. National Aerospace University Kharkov Aviation Institute, Kharkov (2003)

    Google Scholar 

  11. Kiva, D.S., Grebenikov, A.G.: Nauchnye osnovy integrirovannogo proektirovanija samoletov transportnoj kategorii. Scientific basis for integrated design of transport category aircraft. National Aerospace University Kharkov Aviation Institute, Kharkov (2014)

    Google Scholar 

  12. Goncharov, P.S., El’cov, M.Ju., Korshikov, S.B.: NX dlja konstruktora-mashinostroitelja. NX for the structural engineer. DMK Press, Moscow (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Chumak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chumak, A., Buival, L., Humennyi, A., Grebenikov, O., Konyshev, D. (2021). Transport Category Airplane Fuselage Master Geometry Parametrical Modeling Method. In: Shkarlet, S., Morozov, A., Palagin, A. (eds) Mathematical Modeling and Simulation of Systems (MODS'2020). MODS 2020. Advances in Intelligent Systems and Computing, vol 1265. Springer, Cham. https://doi.org/10.1007/978-3-030-58124-4_10

Download citation

Publish with us

Policies and ethics