Skip to main content

Rewriting a Deep Generative Model

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12346))

Included in the following conference series:

Abstract

A deep generative model such as a GAN learns to model a rich set of semantic and physical rules about the target distribution, but up to now, it has been obscure how such rules are encoded in the network, or how a rule could be changed. In this paper, we introduce a new problem setting: manipulation of specific rules encoded by a deep generative model. To address the problem, we propose a formulation in which the desired rule is changed by manipulating a layer of a deep network as a linear associative memory. We derive an algorithm for modifying one entry of the associative memory, and we demonstrate that several interesting structural rules can be located and modified within the layers of state-of-the-art generative models. We present a user interface to enable users to interactively change the rules of a generative model to achieve desired effects, and we show several proof-of-concept applications. Finally, results on multiple datasets demonstrate the advantage of our method against standard fine-tuning methods and edit transfer algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aberman, K., Liao, J., Shi, M., Lischinski, D., Chen, B., Cohen-Or, D.: Neural best-buddies: sparse cross-domain correspondence. ACM TOG 37(4), 69 (2018)

    Article  Google Scholar 

  2. An, X., Pellacini, F.: AppProp: all-pairs appearance-space edit propagation. ACM TOG 27(3), 40 (2008)

    Article  Google Scholar 

  3. Anderson, J.A.: A simple neural network generating an interactive memory. Math. Biosci. 14(3–4), 197–220 (1972)

    Article  Google Scholar 

  4. Andrychowicz, M., et al.: Learning to learn by gradient descent by gradient descent. In: NeurIPS, pp. 3981–3989 (2016)

    Google Scholar 

  5. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: a randomized correspondence algorithm for structural image editing. ACM TOG 28(3), 24 (2009)

    Article  Google Scholar 

  6. Bau, D., et al.: Semantic photo manipulation with a generative image prior. ACM TOG 38(4), 1–11 (2019)

    Article  Google Scholar 

  7. Bau, D., et al.: Gan dissection: visualizing and understanding generative adversarial networks. In: ICLR (2019)

    Google Scholar 

  8. Bengio, S., Bengio, Y., Cloutier, J., Gecsei, J.: On the optimization of a synaptic learning rule. In: Optimality in Artificial and Biological Neural Networks, pp. 6–8. University of Texas (1992)

    Google Scholar 

  9. Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised pixel-level domain adaptation with generative adversarial networks. In: CVPR (2017)

    Google Scholar 

  10. Brown, T.B., et al.: Language models are few-shot learners. arXiv preprint arXiv:2005.14165 (2020)

  11. Burt, P., Adelson, E.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983)

    Article  Google Scholar 

  12. Chan, C., Ginosar, S., Zhou, T., Efros, A.A.: Everybody dance now. In: ICCV (2019)

    Google Scholar 

  13. Chen, X., Zou, D., Li, J., Cao, X., Zhao, Q., Zhang, H.: Sparse dictionary learning for edit propagation of high-resolution images. In: CVPR (2014)

    Google Scholar 

  14. Chen, X., Zou, D., Zhao, Q., Tan, P.: Manifold preserving edit propagation. ACM TOG 31(6), 1–7 (2012)

    Google Scholar 

  15. Cohn, D., Atlas, L., Ladner, R.: Improving generalization with active learning. Mach. Learn. 15(2), 201–221 (1994)

    Google Scholar 

  16. Donahue, J., et al.: DeCAF: a deep convolutional activation feature for generic visual recognition. In: ICML (2014)

    Google Scholar 

  17. Dosovitskiy, A., Brox, T.: Generating images with perceptual similarity metrics based on deep networks. In: NeurIPS (2016)

    Google Scholar 

  18. Dy, J.G., Brodley, C.E.: Visualization and interactive feature selection for unsupervised data. In: SIGKDD, pp. 360–364 (2000)

    Google Scholar 

  19. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: SIGGRAPH. ACM (2001)

    Google Scholar 

  20. Endo, Y., Iizuka, S., Kanamori, Y., Mitani, J.: DeepProp: extracting deep features from a single image for edit propagation. Comput. Graph. Forum 35(2), 189–201 (2016)

    Article  Google Scholar 

  21. Fails, J.A., Olsen Jr, D.R.: Interactive machine learning. In: ACM IUI, pp. 39–45 (2003)

    Google Scholar 

  22. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML, pp. 1126–1135 (2017). JMLR.org

  23. Fried, O., et al.: Text-based editing of talking-head video. ACM TOG 38(4), 1–14 (2019)

    Article  Google Scholar 

  24. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: CVPR (2016)

    Google Scholar 

  25. Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS (2014)

    Google Scholar 

  26. Guo, D.: Coordinating computational and visual approaches for interactive feature selection and multivariate clustering. Inf. Vis. 2(4), 232–246 (2003)

    Article  Google Scholar 

  27. Hasinoff, S.W., Jóźwiak, M., Durand, F., Freeman, W.T.: Search-and-replace editing for personal photo collections. In: 2010 IEEE International Conference on Computational Photography (ICCP), pp. 1–8. IEEE (2010)

    Google Scholar 

  28. Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analogies. In: SIGGRAPH (2001)

    Google Scholar 

  29. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: NeurIPS (2017)

    Google Scholar 

  30. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  31. Huang, X., Liu, M.-Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 179–196. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_11

    Chapter  Google Scholar 

  32. Huh, M., Zhang, R., Zhu, J.Y., Paris, S., Hertzmann, A.: Transforming and projecting images to class-conditional generative networks. In: ECCV (2020)

    Google Scholar 

  33. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Let there be color!: Joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification. ACM TOG 35(4), 1–11 (2016)

    Article  Google Scholar 

  34. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)

    Google Scholar 

  35. Jiang, B., Canny, J.: Interactive machine learning via a gpu-accelerated toolkit. In: ACM IUI, pp. 535–546 (2017)

    Google Scholar 

  36. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  37. Karras, T.: FFHQ dataset (2019). https://github.com/NVlabs/ffhq-dataset

  38. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: ICLR (2018)

    Google Scholar 

  39. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: CVPR (2019)

    Google Scholar 

  40. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of styleGAN. In: CVPR (2020)

    Google Scholar 

  41. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  42. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: ICLR (2014)

    Google Scholar 

  43. Kohonen, T.: Correlation matrix memories. IEEE Trans. Comput. 100(4), 353–359 (1972)

    Article  Google Scholar 

  44. Kohonen, T.: Associative Memory: A System-Theoretical Approach, vol. 17. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-96384-1

    Book  MATH  Google Scholar 

  45. Kohonen, T., Ruohonen, M.: Representation of associated data by matrix operators. IEEE Trans. Comput. 100(7), 701–702 (1973)

    Article  Google Scholar 

  46. Kokiopoulou, E., Chen, J., Saad, Y.: Trace optimization and eigenproblems in dimension reduction methods. Numer. Linear Algebra Appl. 18(3), 565–602 (2011)

    Article  MathSciNet  Google Scholar 

  47. Krause, J., Perer, A., Bertini, E.: INFUSE: interactive feature selection for predictive modeling of high dimensional data. IEEE Trans. Vis. Comput. Graph. 20(12), 1614–1623 (2014)

    Article  Google Scholar 

  48. Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level concept learning through probabilistic program induction. Science 350(6266), 1332–1338 (2015)

    Article  MathSciNet  Google Scholar 

  49. Larsson, G., Maire, M., Shakhnarovich, G.: Learning representations for automatic colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 577–593. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_35

    Chapter  Google Scholar 

  50. Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. ACM TOG 23(3), 689–694 (2004)

    Article  Google Scholar 

  51. Liao, J., Yao, Y., Yuan, L., Hua, G., Kang, S.B.: Visual attribute transfer through deep image analogy. arXiv preprint arXiv:1705.01088 (2017)

  52. Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: NeurIPS (2017)

    Google Scholar 

  53. Luan, F., Paris, S., Shechtman, E., Bala, K.: Deep photo style transfer. In: CVPR, pp. 4990–4998 (2017)

    Google Scholar 

  54. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond mean square error. In: ICLR (2016)

    Google Scholar 

  55. Nagano, K., et al.: paGAN: real-time avatars using dynamic textures. In: SIGGRAPH Asia, p. 258 (2018)

    Google Scholar 

  56. Oord, A.v.d., et al.: Wavenet: a generative model for raw audio. arXiv preprint arXiv:1609.03499 (2016)

  57. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: CVPR (2019)

    Google Scholar 

  58. Patel, K., Drucker, S.M., Fogarty, J., Kapoor, A., Tan, D.S.: Using multiple models to understand data. In: IJCAI (2011)

    Google Scholar 

  59. Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. In: SIGGRAPH, pp. 313–318 (2003)

    Google Scholar 

  60. Portenier, T., Hu, Q., Szabó, A., Bigdeli, S.A., Favaro, P., Zwicker, M.: FaceShop: deep sketch-based face image editing. ACM Trans. Graph. (TOG) 37(4), 99:1–99:13 (2018)

    Article  Google Scholar 

  61. Raghavan, H., Madani, O., Jones, R.: Active learning with feedback on features and instances. JMLR 7(Aug), 1655–1686 (2006)

    MathSciNet  MATH  Google Scholar 

  62. Reinhard, E., Adhikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graphics Appl. 21(5), 34–41 (2001)

    Article  Google Scholar 

  63. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16

    Chapter  Google Scholar 

  64. Schaefer, S., McPhail, T., Warren, J.: Image deformation using moving least squares. ACM TOG 25(3), 533–540 (2006)

    Article  Google Scholar 

  65. Settles, B., Craven, M.: An analysis of active learning strategies for sequence labeling tasks. In: EMNLP, pp. 1070–1079 (2008)

    Google Scholar 

  66. Sharma, A., Foroosh, H.: Slim-CNN: a light-weight CNN for face attribute prediction. arXiv preprint arXiv:1907.02157 (2019)

  67. Shocher, A., Cohen, N., Irani, M.: “zero-shot” super-resolution using deep internal learning. In: CVPR, pp. 3118–3126 (2018)

    Google Scholar 

  68. Socher, R., Ganjoo, M., Manning, C.D., Ng, A.: Zero-shot learning through cross-modal transfer. In: NeurIPS (2013)

    Google Scholar 

  69. Suzuki, R., Koyama, M., Miyato, T., Yonetsuji, T., Zhu, H.: Spatially controllable image synthesis with internal representation collaging. arXiv preprint arXiv:1811.10153 (2018)

  70. Taigman, Y., Polyak, A., Wolf, L.: Unsupervised cross-domain image generation. In: ICLR (2017)

    Google Scholar 

  71. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: CVPR (2018)

    Google Scholar 

  72. Wolberg, G.: Digital image warping. IEEE Computer Society Press, Los Alamitos (1990)

    Google Scholar 

  73. Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J.: Unified perceptual parsing for scene understanding. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 432–448. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_26

    Chapter  Google Scholar 

  74. Xu, K., Li, Y., Ju, T., Hu, S.M., Liu, T.Q.: Efficient affinity-based edit propagation using KD tree. ACM TOG 28(5), 1–6 (2009)

    Google Scholar 

  75. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: NeurIPS, pp. 3320–3328 (2014)

    Google Scholar 

  76. Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: BiSeNet: bilateral segmentation network for real-time semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 334–349. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_20

    Chapter  Google Scholar 

  77. Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao, J.: LSUN: construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365 (2015)

  78. Yücer, K., Jacobson, A., Hornung, A., Sorkine, O.: Transfusive image manipulation. ACM TOG 31(6), 1–9 (2012)

    Article  Google Scholar 

  79. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  80. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40

    Chapter  Google Scholar 

  81. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)

    Google Scholar 

  82. Zhang, R., et al.: Real-time user-guided image colorization with learned deep priors. ACM TOG 9(4), 11 (2017)

    Google Scholar 

  83. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)

    Google Scholar 

  84. ZLL: Face-parsing PyTorch (2019). https://github.com/zllrunning/face-parsing.PyTorch

Download references

Acknowledgements

We thank Jonas Wulff, Hendrik Strobelt, Aaron Hertzman, Taesung Park, William Peebles, Gerald Sussman, and William T. Freeman for their vision, encouragement, and many valuable discussions. We are grateful for the support of DARPA XAI FA8750-18-C-0004, DARPA SAIL-ON HR0011-20-C-0022, NSF 1524817 on Advancing Visual Recognition with Feature Visualizations, NSF BIGDATA 1447476, and a hardware donation from NVIDIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Bau .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 96023 KB)

Supplementary material 2 (pdf 4234 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bau, D., Liu, S., Wang, T., Zhu, JY., Torralba, A. (2020). Rewriting a Deep Generative Model. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12346. Springer, Cham. https://doi.org/10.1007/978-3-030-58452-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58452-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58451-1

  • Online ISBN: 978-3-030-58452-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics