Skip to main content

From Imbalanced Classification to Supervised Outlier Detection Problems: Adversarially Trained Auto Encoders

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2020 (ICANN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12396))

Included in the following conference series:

Abstract

Imbalanced datasets pose severe challenges in training well performing classifiers. This problem is also prevalent in the domain of outlier detection since outliers occur infrequently and are generally treated as minorities. One simple yet powerful approach is to use autoencoders which are trained on majority samples and then to classify samples based on the reconstruction loss. However, this approach fails to classify samples whenever reconstruction errors of minorities overlap with that of majorities. To overcome this limitation, we propose an adversarial loss function that maximizes the loss of minorities while minimizing the loss for majorities. This way, we obtain a well-separated reconstruction error distribution that facilitates classification. We show that this approach is robust in a wide variety of settings, such as imbalanced data classification or outlier- and novelty detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.daviddlewis.com/resources/testcollections/reuters21578/.

  2. 2.

    http://archive.ics.uci.edu/ml/datasets/Arrhythmia.

  3. 3.

    http://www.ai.sri.com/natural-language/projects/arpa-sls/atis.html.

  4. 4.

    https://www.unb.ca/cic/datasets/nsl.html.

References

  1. Aggarwal, C.C.: Outlier Analysis. Data Mining, pp. 237–263. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14142-8_8

    Chapter  Google Scholar 

  2. An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. Special Lect. IE 2(1), 1–18 (2015)

    Google Scholar 

  3. Laura, B., Michael, P., Bernd, B.: Robust anomaly detection in images using adversarial autoencoders. In: Proceedings of Joint European Conference on Machine Learning and Knowledge Discovery in Databases (2019)

    Google Scholar 

  4. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018)

    Article  Google Scholar 

  5. Cardie, C., Howe, N.: Improving minority class prediction using case-specific feature weights (1997)

    Google Scholar 

  6. Raghavendra, C., Aditya, K.M., Sanjay, C.: Anomaly Detection using One-Class Neural Networks. arXiv preprint arXiv:1802.06360 (2018)

  7. Varun, C., Arindam, B., Vipin, K.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 1–58 (2009)

    Google Scholar 

  8. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  9. Jinghui, C., Saket, S., Charu, A., Deepak, T.: Outlier detection with autoencoder ensembles. In: Proceedings of the SIAM International Conference on Data Mining (2017)

    Google Scholar 

  10. Yong, S.C., Yong, H.T.: Abnormal event detection in videos using spatiotemporal autoencoder. In: Proceedings of International Symposium on Neural Network (2017)

    Google Scholar 

  11. Dau, H.A., Ciesielski, V., Song, A.: Anomaly detection using replicator neural networks trained on examples of one class. In: Dick, G., et al. (eds.) SEAL 2014. LNCS, vol. 8886, pp. 311–322. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13563-2_27

    Chapter  Google Scholar 

  12. Hoang, A.D., Vic, C., Andy, S.: Anomaly detection using replicator neural networks trained on examples of one class. In: Proceedings of the 10th International Conference on Simulated Evolution and Learning (2014)

    Google Scholar 

  13. Abhishek, D., Meet, P., Vaibhav, S., Rudra, M., Mahesh, S.: Benchmarking datasets for anomaly-based network intrusion detection: KDD CUP 99 alternatives. In: Proceedings of 3rd International Conference on Computing, Communication and Security (ICCCS) (2018)

    Google Scholar 

  14. Haimonti, D., Chris, G., Kirk, B., Hillol, K.: Distributed top-k outlier detection from astronomy catalogs using the demac system. In: Proceedings of the 2007 SIAM International Conference on Data Mining (2007)

    Google Scholar 

  15. Gogoi, P., Borah, B., Bhattacharyya, D.K., Kalita, J.K.: Outlier identification using symmetric neighborhoods. Procedia Technol. 6, 239–246 (2012)

    Article  Google Scholar 

  16. Ian, J.G., Jonathon, S., Christian, S.: Explaining and harnessing Adversarial Examples. arXiv preprint arXiv:1412.6572 (2014)

  17. Ville, H., Ismo, K., Pasi, F.: Outlier detection using k-nearest neighbour graph. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. 3 (2004)

    Google Scholar 

  18. Douglas, M.H.: Identification of Outliers. Springer, Berlin (1980)

    Google Scholar 

  19. Simon, H., Hongxing, H., Graham, W., Rohan, B.: Outlier detection using replicator neural networks. In: Proceedings of International Conference on Data Warehousing and Knowledge Discovery (2002)

    Google Scholar 

  20. Chen, H., Yining, L., Chen, C.L., Xiaoou, T.: Learning deep representation for imbalanced classification. In: Proceedings of Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  21. Ishii, Y., Takanashi, M.: Low-cost unsupervised outlier detection by autoencoders with robust estimation. J. Inf. Process. 27, 335–339 (2019)

    Google Scholar 

  22. Nathalie, J., Catherine, M., Mark, G., et al.: A novelty detection approach to classification. In: Proceedings of International Joint Conference on Artificial Intelligence (1995)

    Google Scholar 

  23. Japkowicz, N., Stephen, S.: The class imbalance problem: a systematic study. Intell. Data Anal. 6(5), 429–449 (2002)

    Article  Google Scholar 

  24. Thorsten, J.: Text categorization with support vector machines: learning with many relevant features. In: Proceedings of European Conference on Machine Learning (1998)

    Google Scholar 

  25. Ramakrishnan, K., Hyenkyun, W., Charu, C.A., Haesun, P.: Outlier detection for text data. In: Proceedings of International Conference on Data Mining (2017)

    Google Scholar 

  26. Kubat, M., Holte, R.C., Matwin, S.: Machine learning for the detection of oil spills in satellite radar image. Mach. Learn. 30, 195–215 (1988)

    Article  Google Scholar 

  27. Matjaz, K., Igor, K., et al.: Cost-sensitive learning with neural networks. In: Proceedings of European Conference on Artificial Intelligence (1998)

    Google Scholar 

  28. Longin, J.L., Aleksandar, L., Dragoljub, P.: Outlier detection with kernel density functions. In: Proceedings of International Workshop on Machine Learning and Data Mining in Pattern Recognition (2007)

    Google Scholar 

  29. Steve, L., Ian, B., Andrew, B., Ah Chung, T., Giles, C.L.: Neural network classification and prior class probabilities. In: Neural Networks: Tricks of the Trade (1998)

    Google Scholar 

  30. Lei, L., Andrew, P., Martha, W.: Supervised autoencoders: improving generalization performance with unsupervised regularizers. In: Proceedings of Neural Information Processing Systems (2018)

    Google Scholar 

  31. Hyoung-joo, L., Sungzoon, C.: The novelty detection approach for different degrees of class imbalance. In: Proceedings of International Conference on Neural Information processing (2006)

    Google Scholar 

  32. Alireza, M.,, Jonathon, S., Navdeep, J., Ian, G., Brendan, F.: Adversarial Autoencoders. arXiv preprint arXiv:1511.05644 (2015)

  33. Mazurowski, M.A., Habas, P.A., Zurada, J.M., Lo, J.Y., Baker, J.A., Tourassi, G.D.: Training neural network classifiers for medical decision making: the effects of imbalanced datasets on classification performance. Neural Networks 21(2–3), 427–436 (2008)

    Article  Google Scholar 

  34. Ninareh, M., Fred, M., Nripsuta, S., Kristina, L., Aram, G.: A survey on Bias and Fairness in Machine Learning. arXiv preprint arXiv:1908.09635 (2019)

  35. Ng, W.W., Zeng, G., Zhang, J., Yeung, D.S., Pedrycz, W.: Dual autoencoders features for imbalance classification problem. Pattern Recogn. 60, 875–889 (2016)

    Article  Google Scholar 

  36. Olszewski, D.: A probabilistic approach to fraud detection in telecommunications. Knowl.-Based Syst. 26, 246–258 (2012)

    Article  Google Scholar 

  37. Panigrahi, S., Kundu, A., Sural, S., Majumdar, A.K.: Credit card fraud detection: A fusion approach using Dempster-theory and Bayesian learning. Information Fusion 10(4), 354–363 (2009)

    Article  Google Scholar 

  38. Jeffrey, P., Richard, S., Christopher, D.M.: Glove: global vectors for word representation. In: Proceedings of Conference on Empirical Methods in Natural Language Processing (EMNLP), (2014)

    Google Scholar 

  39. Hamed, S., Carlotta, D., Bardh, P., Giovanni, S.: Unsupervised Boosting-based Autoencoder Ensembles for Outlier Detection. arXiv preprint arXiv:1910.09754, 2019

  40. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines. Optimization, and Beyond, Regularization (2001)

    Google Scholar 

  41. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the KDD CUP 99 data set. In: 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications (2009)

    Google Scholar 

  42. Yang, Y., Liu, X.: A re-examination of text categorization methods. In: Proceedings of International Conference on Research and Development in Information, Retrieval (1999)

    Google Scholar 

  43. Matthew, D.Z.A.: An Adaptive Learning Rate Method. arXiv preprint arXiv:1212.5701 (2012)

  44. Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2017)

    Google Scholar 

  45. Junyi, Z., Jinliang, Z., Ping, J.: Credit Card Fraud Detection Using Autoencoder Neural Network. arXiv preprint arXiv:1908.11553 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Lübbering .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lübbering, M., Ramamurthy, R., Gebauer, M., Bell, T., Sifa, R., Bauckhage, C. (2020). From Imbalanced Classification to Supervised Outlier Detection Problems: Adversarially Trained Auto Encoders. In: Farkaš, I., Masulli, P., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2020. ICANN 2020. Lecture Notes in Computer Science(), vol 12396. Springer, Cham. https://doi.org/10.1007/978-3-030-61609-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61609-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61608-3

  • Online ISBN: 978-3-030-61609-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics