Skip to main content

Abstract

The novel severe contagious respiratory syndrome coronavirus (COVID-19) has caused the greatest global challenge and public health, after the pandemic of the influenza outbreak of 1918. According to the World Health Organization, more than 19,687,156 people have been infected by the virus, with at least 727,435 deaths globally as of 10:33 am CEST, 10 August 2020. Globally, people spend much of their time indoor to contain or avoid people infected with the virus. Until now, there has been a rapid increase in diverts research works to find a lasting solution to this worldwide threat. In the past few years, IoT has drawn convincing ground in research fields range from academic and industrial fields, especially in healthcare. The IoT revolution reshapes contemporary healthcare systems by incorporate economic, social, and technological prospects. It progresses from conventional healthcare systems to more personalized healthcare systems, where patients can be monitored, diagnosed, and treated effortlessly. Wearable body sensor network has transformed the power to change our lifestyle with abundant technologies in areas of healthcare, entertainment, transportation, retail, business, and emergency services control. The integration of wireless sensors and sensor networks with simulation and intelligent systems research has developed an interdisciplinary definition of ambient intelligence to address the obstacles faced in our everyday lives. It is essential to build a reliable and efficient wearable system for monitoring during the COVID-19 outbreak. In the situation of COVID-19, an IoT-based wearable body sensor can be utilized to lower the possible spread of the pandemic using enabled/linked devices aimed at people for early diagnosis, monitoring during social distance, quarantine time, and after recovery. Therefore, this chapter reviews the role of IoT and wearable body sensor technologies in fighting COVID-19 and presents an IoT-based wearable body sensor architecture to combat the COVID-19 outbreak. IoT-based wearable body sensor can be used widely to control and track patient conditions in both towns and cities using an internal network, thus minimize pressure and tension on healthcare professionals, eliminating medical faults, reducing workload and medical staff productivity, reducing long-term healthcare costs, and enhancing patient satisfaction during COVID-19 pandemic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ogundokun, R.O., Lukman, A.F., Kibria, G.B., Awotunde, J.B., Aladeitan, B.B.: Predictive modelling of COVID-19 confirmed cases in Nigeria. Infect. Dis. Modelling 5, 543–548 (2020)

    Article  Google Scholar 

  2. Asai, A., Konno, M., Ozaki, M., Otsuka, C., Vecchione, A., Arai, T., Taniguchi, M.: COVID-19 drug discovery using intensive approaches. Int. J. Mol. Sci. 21(8), 2839 (2020)

    Article  Google Scholar 

  3. Helmy, Y.A., Fawzy, M., Elaswad, A., Sobieh, A., Kenney, S.P., Shehata, A.A.: The COVID-19 pandemic: a comprehensive review of taxonomy, genetics, epidemiology, diagnosis, treatment, and control. J. Clin. Med. 9(4), 1225 (2020)

    Article  Google Scholar 

  4. Rahman, M.S., Peeri, N.C., Shrestha, N., Zaki, R., Haque, U., Ab Hamid, S.H.: Defending against the novel coronavirus (COVID-19) outbreak: how can the internet of things (IoT) help to save the world? Health Policy Technol. 9(2), 136–138 (2020)

    Google Scholar 

  5. Allam, Z., Jones, D.S.: Pandemic stricken cities on lockdown. Where are our planning and design professionals [now, then, and into the future]? Land Use Policy 104805 (2020)

    Google Scholar 

  6. Pullano, G., Pinotti, F., Valdano, E., Boëlle, P.Y., Poletto, C., Colizza, V.: Novel coronavirus (2019-nCoV) early-stage importation risk to Europe, January 2020. Eurosurveillance 25(4), 2000057 (2020)

    Article  Google Scholar 

  7. Zhao, S., Lin, Q., Ran, J., Musa, S.S., Yang, G., Wang, W., Wang, M.H.: Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: a data-driven analysis in the early phase of the outbreak. Int. J. Infect. Dis. 92, 214–217 (2020)

    Article  Google Scholar 

  8. Joyia, G.J., Liaqat, R.M., Farooq, A., Rehman, S.: Internet of medical things (IOMT): applications, benefits, and future challenges in the healthcare domain. J. Commun. 12(4), 240–247 (2017)

    Google Scholar 

  9. Cook, D.J., Augusto, J.C., Jakkula, V.R.: Ambient intelligence: technologies, applications, and opportunities. Pervasive Mob. Comput. 5(4), 277–298 (2009)

    Article  Google Scholar 

  10. Magsi, H., Sodhro, A.H., Chachar, F.A., Abro, S.A.K., Sodhro, G.H., Pirbhulal, S.: Evolution of 5G on the internet of medical things. In: International Conferences on Computing, Mathematics, and Engineering Technologies (iCoMET), March 2018, pp. 1–7. IEEE (2018)

    Google Scholar 

  11. Sodhro, A.H., Sangaiah, A.K., Pirphulal, S., Sekhari, A., Ouzrout, Y.: Green media-aware medical IoT system. Multimedia Tools Appl. 78(3), 3045–3064 (2019)

    Article  Google Scholar 

  12. Awotunde, J.B., Adeniyi, A.E., Ogundokun, R.O., Ajamu, G.J., Adebayo, P.O.: MIoT-based big data analytics architecture, opportunities and challenges for enhanced telemedicine systems. Stud. Fuzziness and Soft Comput. 410, 199–220 (2021)

    Google Scholar 

  13. Darwish, A., Hassanien, A.E.: Wearable and implantable wireless sensor network solutions for healthcare monitoring. Sensors 11(6), 5561–5595 (2011)

    Article  Google Scholar 

  14. Bibri, S.E.: The IoT for smart sustainable cities of the future: an analytical framework for sensor-based big data applications for environmental sustainability. Sustain. Urban Areas 38, 230–253 (2018)

    Google Scholar 

  15. Manogaran, G., Chilamkurti, N., Hsu, C.H.: Emerging trends, issues, and challenges on the internet of medical things and wireless networks. Pers. Ubiquit. Comput. 22(5–6), 879–882 (2018)

    Article  Google Scholar 

  16. Christensen, K., Doblhammer, G., Rau, R., Vaupel, J.W.: Ageing populations: the challenges ahead. Lancet 374(9696), 1196–1208 (2009)

    Article  Google Scholar 

  17. Yach, D., Hawkes, C., Gould, C.L., Hofman, K.J.: The global burden of chronic diseases: overcoming impediments to prevention and control. JAMA 291(21), 2616–2622 (2004)

    Article  Google Scholar 

  18. Darkins, A., Ryan, P., Kobb, R., Foster, L., Edmonson, E., Wakefield, B., Lancaster, A.E.: Care coordination/home telehealth: the systematic implementation of health informatics, home telehealth, and disease management to support the care of veteran patients with chronic conditions. Telemed. e-Health 14(10), 1118–1126 (2008)

    Article  Google Scholar 

  19. Ekeland, A.G., Bowes, A., Flottorp, S.: Effectiveness of telemedicine: a systematic review of reviews. Int. J. Med. Inform. 79(11), 736–771 (2010)

    Article  Google Scholar 

  20. Christaki, E.: New technologies in predicting, preventing, and controlling emerging infectious diseases. Virulence 6(6), 558–565 (2015)

    Article  Google Scholar 

  21. Udgata, S.K., Suryadevara, N.K.: COVID-19: challenges and advisory. In: The Internet of Things and Sensor Network for COVID-19, pp. 1–17. Springer, Singapore (2020)

    Google Scholar 

  22. Ahmadi, H., Arji, G., Shahmoradi, L., Safdari, R., Nilashi, M., Alizadeh, M.: The application of the internet of things in healthcare: a systematic literature review and classification. Universal Access Inf. Soc. 1–33 (2019)

    Google Scholar 

  23. Abiodun, M.K., Awotunde, J.B., Ogundokun, R.O., Adeniyi, E.A., & Arowolo, M.O: Security and information assurance for IoT-Based big data. Stud. Comput. Intell. 972,189–211 (2021)

    Google Scholar 

  24. Wu, F., Wu, T., Yuce, M.R.: An internet-of-things (IoT) network system for connected safety and health monitoring applications. Sensors 19(1), 21 (2019)

    Article  Google Scholar 

  25. Hammad, T.A., Abdel-Wahab, M.F., DeClaris, N., El-Sahly, A., El-Kady, N., Strickland, G.T.: Comparative evaluation of the use of artificial neural networks for modeling the epidemiology of schistosomiasis mansoni. Trans. R. Soc. Trop. Med. Hyg. 90(4), 372–376 (1996)

    Article  Google Scholar 

  26. Rodrigues, J.J., Segundo, D.B.D.R., Junqueira, H.A., Sabino, M.H., Prince, R.M., Al-Muhtadi, J., De Albuquerque, V.H.C.: Enabling technologies for the internet of health things. IEEE Access 6, 13129–13141 (2018)

    Article  Google Scholar 

  27. Chen, S.C.I., Hu, R., McAdam, R.: Smart, remote, and targeted health care facilitation through connected health: qualitative study. J. Med. Internet Res. 22(4), e14201 (2020)

    Google Scholar 

  28. Poppas, A., Rumsfeld, J.., Wessler, J.D.: Telehealth is having a moment: will it last? (2020)

    Google Scholar 

  29. Olsen, G.A.: U.S. Patent application no. 15/339,639 (2017)

    Google Scholar 

  30. Crowley, R., Daniel, H., Cooney, T.G., Engel, L.S.: Envisioning a better US health care system for all: coverage and cost of care. Ann. Internal Med. 172(2_Supplement), S7-S32 (2020)

    Google Scholar 

  31. HealthnetConnect.: Healthcare delivery, remimagined. https://healthnetconnect.com/. Accessed 12 Sept 2020

  32. Ohannessian, R., Duong, T.A., Odone, A.: Global telemedicine implementation and integration within health systems to fight the COVID-19 pandemic: a call to action. JMIR Public Health Surveill. 6(2), e18810 (2020)

    Google Scholar 

  33. Habibzadeh, H., Dinesh, K., Shishvan, O.R., Boggio-Dandry, A., Sharma, G., Soyata, T.: A survey of healthcare internet of things (HIoT): a clinical perspective. IEEE Internet Things J. 7(1), 53–71 (2019)

    Article  Google Scholar 

  34. Bai, Y., Yao, L., Wei, T., Tian, F., Jin, D.Y., Chen, L., Wang, M.: Presumed asymptomatic carrier transmission of COVID-19. JAMA 323(14), 1406–1407 (2020)

    Article  Google Scholar 

  35. Konstantakopoulos, I.C., Barkan, A.R., He, S., Veeravalli, T., Liu, H., Spanos, C.: A deep learning and gamification approach to improving human-building interaction and energy efficiency in smart infrastructure. Appl. Energy 237, 810–821 (2019)

    Article  Google Scholar 

  36. Gupta, M., Abdelsalam, M., Mittal, S.: Enabling and enforcing social distancing measures using smart city and its infrastructures: a COVID-19 use case. ArXiv preprint arXiv:2004.09246 (2020)

  37. Mehmood, R., Katib, S.S.I., Chlamtac, I.: Smart Infrastructure and Applications. Springer International Publishing, Berlin (2020)

    Google Scholar 

  38. Ullo, S.L., Sinha, G.R.: Advances in smart environment monitoring systems using IoT and sensors. Sensors 20(11), 3113 (2020)

    Article  Google Scholar 

  39. Kamal, M., Aljohani, A., Alanazi, E.: IoT meets COVID-19: status, challenges, and opportunities. ArXiv preprint arXiv:2007.12268 (2020)

  40. Abiodun, M.K., Awotunde, J.B., Ogundokun, R.O., Misra, S., Adeniyi, E.A., Arowolo, M.O., & Jaglan, V.: Cloud and big data: A mutual benefit for organization development. J. Phys.: Conf. Ser. 1767(1), 012020 (2021). IOP Publishing 

    Google Scholar 

  41. Koh, D.: SPHCC employs IoT tech and wearable sensors to monitor COVID-19 patients. Mobi Health News. https://www.mobihealthnews.com/news/asia-pacific/sphcc-employs-iot-tech-and-wearable-sensors-monitor-covid-19-patients (2020). Accessed 12 Sept 2020

  42. Ogundokun, R.O., Awotunde, J.B.: Machine learning prediction for COVID-19 pandemic in India. medRxiv (2020)

    Google Scholar 

  43. Baharudin, H., Wong, L.: Coronavirus: Singapore develops a smartphone app for efficient contact tracing. https://www.straitstimes.com/singapore/coronavirus-singapore-develops-smartphone-app-for-efficient-contact-tracing

  44. Sheng, Z., Wang, H., Yin, C., Hu, X., Yang, S., Leung, V.C.: Lightweight management of resource-constrained sensor devices in the internet of things. IEEE Internet Things J. 2(5), 402–411 (2015)

    Article  Google Scholar 

  45. Nichols, S.P., Koh, A., Storm, W.L., Shin, J.H., Schoenfisch, M.H.: Biocompatible materials for continuous glucose monitoring devices. Chem. Rev. 113(4), 2528–2549 (2013)

    Article  Google Scholar 

  46. Zhang, Y., Sun, L., Song, H., Cao, X.: Ubiquitous WSN for healthcare: recent advances and prospects. IEEE Internet Things J. 1(4), 311–318 (2014)

    Article  Google Scholar 

  47. You, I., Choo, K.K.R., Ho, C.L.: A smartphone-based wearable sensor for monitoring real-time physiological data. Comput. Electr. Eng. 65, 376–392 (2018)

    Article  Google Scholar 

  48. Nemati, E., Batteate, C., Jerrett, M.: Opportunistic environmental sensing with smartphones: a critical review of current literature and applications. Curr. Environ. Health Reports 4(3), 306–318 (2017)

    Article  Google Scholar 

  49. Benini, L., Farella, E., Guiducci, C.: Wireless sensor networks: enabling technology for ambient intelligence. Microelectron. J. 37(12), 1639–1649 (2006)

    Article  Google Scholar 

  50. Deng, Z., Wu, Q., Lv, X., Zhu, B., Xu, S., Wang, X.: Application analysis of wireless sensor networks in nuclear power plant. In: International Symposium on Software Reliability, Industrial Safety, Cyber Security, and Physical Protection for Nuclear Power Plant, August 2019, pp. 135–148. Springer, Singapore (2019)

    Google Scholar 

  51. Belfkih, A., Duvallet, C., Sadeg, B.: A survey on wireless sensor network databases. Wireless Netw. 25(8), 4921–4946 (2019)

    Article  Google Scholar 

  52. Farsi, M., Elhosseini, M.A., Badawy, M., Ali, H.A., Eldin, H.Z.: Deployment techniques in wireless sensor networks, coverage, and connectivity: a survey. IEEE Access 7, 28940–28954 (2019)

    Article  Google Scholar 

  53. Yousefi, M.H.N., Kavian, Y.S., Mahmoudi, A.: On the processing architecture in wireless video sensor networks: node and network-level performance evaluation. Multimedia Tools Appl. 78(17), 24789–24807 (2019)

    Article  Google Scholar 

  54. Venugopal, K.R., Kumaraswamy, M.: An introduction to QoS in wireless sensor networks. In: QoS Routing Algorithms for Wireless Sensor Networks, pp. 1–21. Springer, Singapore (2020)

    Google Scholar 

  55. Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Comput. Netw. 52(12), 2292–2330 (2008)

    Article  Google Scholar 

  56. Akyildiz, I.F., Vuran, M.C.: Wireless Sensor Networks, vol. 4. Wiley, New York (2010)

    Google Scholar 

  57. Govinda, K.: Body fitness monitoring using IoT devices. In: Contemporary Applications of Mobile Computing in Healthcare Settings, pp. 154–169. IGI Global (2018)

    Google Scholar 

  58. Varshney, U.: Pervasive healthcare: applications, challenges, and wireless solutions. Commun. Assoc. Inf. Syst. 16(1), 3 (2005)

    Google Scholar 

  59. Varshney, U.: Mobile health: four emerging themes of research. Decis. Support Syst. 66, 20–35 (2014)

    Article  Google Scholar 

  60. Benjamin, D.M.: Reducing medication errors and increasing patient safety: case studies in clinical pharmacology. J. Clin. Pharmacol. 43(7), 768–783 (2003)

    Article  Google Scholar 

  61. Alumona, T.L., Idigo, V.E., Nnoli, K.P.: Remote monitoring of patients’ health using wireless sensor networks (WSNs). IPASJ Int. J. Electron. Commun. (IIJEC) 2(9) (2014)

    Google Scholar 

  62. Vijendra, S.: Efficient clustering for high dimensional data: subspace based clustering and density-based clustering. Inf. Technol. J. 10(6), 1092–1105 (2011)

    Article  Google Scholar 

  63. Panigrahy, S.K., Dash, B.P., Korra, S.B., Turuk, A.K., Jena, S.K.: Comparative study of ECG-based key agreement schemes in wireless body sensor networks. In: Recent Findings in Intelligent Computing Techniques, pp. 151–161. Springer, Singapore (2019)

    Google Scholar 

  64. Velez, F.J., Chávez-Santiago, R., Borges, L.M., Barroca, N., Balasingham, I., Derogarian, F.: Scenarios and applications for wearable technologies and WBSNs with energy harvesting. Wearable Technol. Wireless Body Sensor Netw. Healthc. 11, 31 (2019)

    Article  Google Scholar 

  65. Rabby, M.K.M., Alam, M.S., Shawkat, M.S.A.: A priority-based energy harvesting scheme for charging embedded sensor nodes in wireless body area networks. PloS One 14(4), e0214716 (2019)

    Google Scholar 

  66. Chen, C.M., Xiang, B., Wu, T.Y., Wang, K.H.: An anonymous mutual authenticated key agreement scheme for wearable sensors in wireless body area networks. Appl. Sci. 8(7), 1074 (2018)

    Article  Google Scholar 

  67. Haghi, M., Thurow, K., Stoll, R.: Wearable devices in the medical internet of things: scientific research and commercially available devices. Healthc. Inf. Res. 23(1), 4–15 (2017)

    Article  Google Scholar 

  68. El Khaddar, M.A., Boulmalf, M.: Smartphone: the ultimate IoT and IoE device. Smartphones Appl. Res. Perspect. 137 (2017)

    Google Scholar 

  69. Adeniyi, E.A., Ogundokun, R.O., & Awotunde, J.B.: IoMT-based wearable body sensors network healthcare monitoring system. Stud. Comput. Intell. 933, 103–121 (2021)

    Google Scholar 

  70. Mohammed, M.N., Hazairin, N.A., Syamsudin, H., Al-Zubaidi, S., Sairah, A.K., Mustapha, S., Yusuf, E.: 2019 novel coronavirus disease (Covid-19): detection and diagnosis system using IoT based smart glasses. Int. J. Adv. Sci. Technol 29(7 Special Issue) (2020)

    Google Scholar 

  71. Bright, J., Liao, R.: Chinese startup Rokid pitches COVID-19 detection glasses in the US. China Publishing Company (2020)

    Google Scholar 

  72. Tamura, T., Huang, M., Togawa, T.: Current developments in wearable thermometers. Adv. Biomed. Eng. 7, 88–99 (2018)

    Article  Google Scholar 

  73. Mohammed, M.N., Hazairin, N.A., Al-Zubaidi, S., AK, S., Mustapha, S., Yusuf, E.: Toward a novel design for coronavirus detection and diagnosis system using IoT based drone technology. Int. J. Psychosoc. Rehabil. 24(7), 2287–2295 (2020)

    Google Scholar 

  74. Chamberlain, S.D., Singh, I., Ariza, C.A., Daitch, A.L., Philips, P.B., Dalziel, B.D.: Real-time detection of COVID-19 epicenters within the United States using a network of smart thermometers. medRxiv (2020)

    Google Scholar 

  75. Dubov, A., Shoptaw, S.: The value and ethics of using technology to contain the COVID-19 epidemic. Am. J. Bioethics 1–5 (2020)

    Google Scholar 

  76. McNeil, D.G.: Can smart thermometers track the spread of the coronavirus? The New York Times (2020)

    Google Scholar 

  77. Mohammed, M.N., Syamsudin, H., Al-Zubaidi, S., AKS, R.R., Yusuf, E.: Novel COVID-19 detection and diagnosis system using IOT based smart helmet. Int. J. Psychosoc. Rehabil. 24(7) (2020)

    Google Scholar 

  78. Ruktanonchai, N.W., Ruktanonchai, C.W., Floyd, J.R., Tatem, A.J.: Using Google location history data to quantify fine-scale human mobility. Int. J. Health Geogr. 17(1), 28 (2018)

    Article  Google Scholar 

  79. Ghosh, S.: Police in China, Dubai, and Italy are using these surveillance helmets to scan people for COVID-19 fever as they walk past and it may be our future normal. Bus. Insider (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Bamidele Awotunde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Awotunde, J.B., Jimoh, R.G., AbdulRaheem, M., Oladipo, I.D., Folorunso, S.O., Ajamu, G.J. (2022). IoT-Based Wearable Body Sensor Network for COVID-19 Pandemic. In: Hassanien, AE., Elghamrawy, S.M., Zelinka, I. (eds) Advances in Data Science and Intelligent Data Communication Technologies for COVID-19. Studies in Systems, Decision and Control, vol 378. Springer, Cham. https://doi.org/10.1007/978-3-030-77302-1_14

Download citation

Publish with us

Policies and ethics