Skip to main content

Evaluation for Angular Distortion of Welding Plate

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 294))

Included in the following conference series:

Abstract

Welding is essential in our life. It is crucial to nurture welding skills in Japan nowadays. The experts have to evaluate the many beginners' welding. Since the experts' burden is critical, a computational assistant for evaluating beginners' welding is required. This paper describes a simple evaluation system of welding plates by beginners. The authors considered four types of beginners' typical defects: lack of welding metal, linear misalignment, welding metal unevenness, and angular distortion. To capture these defects simultaneously, the authors propose an original equipment to photograph the welding plates. The computer extracts only the part of the welding plate using color markers. CNN (Convolutional Neural Network) evaluates the defects. As a first step, the authors addressed evaluating only angular distortion. The angular distortion is one of the typical failures by beginners. In the experiment, the authors conducted the validation of CNN. In the conclusion part, we discuss the experimental result and future works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Niles, R.W., Jackson, C.E.: Weld thermal efficiency of the GTAW process. Weld. J. 54, 25–32 (1975)

    Google Scholar 

  2. Asai, S., Ogawa, T., Takebayashi, H.: Visualization and digitation of welder skill for education and training. Weld. World 56, 26–34 (2012)

    Article  Google Scholar 

  3. Hino, T., et al.: Visualization of gas tungsten arc welding skill using brightness map of backside weld pool. Trans. Mat. Res. Soc. Japan 44(5), 181–186 (2019)

    Article  Google Scholar 

  4. Byrd, A.P., Stone, R.T., Anderson, R.G., Woltjer, K.: The use of virtual welding simulators to evaluate experimental welders. Weld. J. 94(12), 389–395 (2015)

    Google Scholar 

  5. Kato, S., Hino, T., Yoshikawa, N.: Fundamental study on evaluation system of beginner’s welding using CNN. In: Lecture Notes in Networks and Systems, vol. 96, pp. 821–827 (2019)

    Google Scholar 

  6. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  7. Kato, S., Hino, T., Kumeno, H., Kagawa, T., Nobuhara, H.: Automatic detection of beginner's welding joint. In: Proceedings of 2020 Joint 11th International Conference on Soft Computing and Intelligent Systems and 21st International Symposium on Advanced Intelligent Systems, pp. 465–467 (2020).

    Google Scholar 

  8. Mochizuki, M., Okano, S.: Effect of welding process conditions on angular distortion induced by bead-on-plate welding. ISIJ Int. 58(1), 153–158 (2018)

    Article  Google Scholar 

  9. Krizhevsky, A., Sutskever, I., Hinton, CE.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS 2012), pp. 1097–1105 (2012)

    Google Scholar 

  10. Shin, H.C., et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016)

    Article  Google Scholar 

  11. Priddy, K.L., Keller, P.E.: Artificial Neural Networks - An Introduction, Chapter 11 Dealing with Limited Amounts of Data, pp. 101–102. SPIE Press, Bellingham (2005)

    Book  Google Scholar 

  12. Wong, T.-T.: Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recogn. 48(9), 2839–2846 (2015)

    Google Scholar 

  13. MathWorks: Transfer Learning Using AlexNet. https://jp.mathworks.com/help/deeplearning/ug/transfer-learning-using-alexnet.html;jsessionid=10ee690544b1eb830e5dc2412cf0?lang=en. Accessed 27 Feb 2021

  14. Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  Google Scholar 

  15. Park, J.-K., , An, W.-H., Kang, D.-J.: Convolutional neural network based surface inspection system for non-patterned welding defects. Int. J. Precis. Eng. Manuf. 20(3), 363–374 (2019)

    Google Scholar 

Download references

Acknowledgments

This research is supported by the Japan Welding Engineering Society's grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Kato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kato, S. et al. (2022). Evaluation for Angular Distortion of Welding Plate. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2021. Lecture Notes in Networks and Systems, vol 294. Springer, Cham. https://doi.org/10.1007/978-3-030-82193-7_23

Download citation

Publish with us

Policies and ethics