Skip to main content

Part of the book series: Experientia Supplementum ((EXS,volume 72))

Summary

The cephalopod nervous system is the most complex of any invertebrate nervous system. Although species-specific differences exist, its high level of complexity almost certainly is due to the cephalopods’ very active, fast-moving, predatory life style, and their complex behavior and extreme flexibility of response to different environmental situations. Nevertheless, the basic morphological plan of the cephalopod nervous system is still of the ganglionated “molluscan” design. During the course of evolution some of the ganglia became increasingly complex and subdivided into lobes; also, new ganglia were added. This chapter describes the basic morphological plan of the cephalopod nervous system and outlines some species-specific differences that developed as adaptations to different life styles. Special emphasis will be given to those features of the cephalopod nervous system that, within the invertebrates, are unusual or even unique, often rivaling the equivalent parts of the vertebrate nervous system in sophistication; some of these features may characterize higher brain and nervous system function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, N.J., Lane, N. and Bundgaard M. (1986) The blood-brain interface in invertebrates. Ann. N.Y. Acad. Sci. 481: 20–41.

    Article  PubMed  CAS  Google Scholar 

  • Aldred, R.G., Nixon, M. and Young, J.Z. (1983) Cirrothauma murrayi Chun, a finned octopod. Phil. Trans. R. Soc. Lond. B 301: 1–54.

    Article  Google Scholar 

  • Alexandrowicz, J.S. (1960) Innervation of the hearts of Sepia officincalis. Acta Zool. 41: 65–100.

    Article  Google Scholar 

  • Aronson, R.B. (1991) Ecology, paleobiology and evolutionary constraint in the octopus. Bull. Marine Sci. 49: 245–255.

    Google Scholar 

  • Auerbach, B. and Budelmann, B.U. (1986) Evidence for acetylcholine as neurotransmitter in the statocyst of Octopus vulgaris. Cell Tissue Res. 243: 429–436.

    Article  CAS  Google Scholar 

  • Bleckmann, H. Budelmann, B.U. and Bullock, T.H. (1991) Peripheral and central nervous responses evoked by small water movements in a cephalopod. J. Comp. Physiol. A 168: 247–257.

    PubMed  CAS  Google Scholar 

  • Boycott, B.B. (1961) The functional organization of the brain of the cuttlefish Sepia officinalis. Proc. R. Soc. Lond. B 153: 503–534.

    Article  Google Scholar 

  • Boyle, P.R. (1986) Neural control of cephalopod behavior. In: A.O.D. Willows (ed.): The Mollusca, Vol. 9, Neurobiology and Behavior, Part 2, Academic Press, Orlando, pp. 1–99.

    Google Scholar 

  • Budelmann, B.U. (1976) Equilibrium receptor systems in molluscs. In: P.J. MIll (ed.): Structure and Function of Proprioceptors in the Invertebrates, Chapman and Hall, London, pp. 529–566.

    Google Scholar 

  • Budelmann, B.U. (1990) The statocysts of squid. In: D. Gilbert, H. Adelman and J. Arnold (eds): Squid as Experimental Animals. Plenum Press, New York, pp. 421–439.

    Google Scholar 

  • Budelmann, B.U. (1994) Cephalopod sense organs, nerves and the brain: adaptations for high performance and life style. Mar. Behav. Physiol. 25: 13–33.

    Article  Google Scholar 

  • Budelmann, B.U. and Bleckmann, H. (1988) A lateral line analogue in cephalopods: water waves generate microphonic potentials in the epidermal head lines of Sepia and Lolliguncula. J. Comp. Physiol. A 164: 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Budelmann, B.U. and Bonn, U. (1982) Histochemical evidence for catecholamines as neurotransmitters in the statocyst of Octopus vulgaris. Cell Tissue Res. 227: 475–483.

    Article  PubMed  CAS  Google Scholar 

  • Budelmann, B.U. and Thies, G. (1977) Secondary sensory cells in the gravity receptor system of the statocyst of Octopus vulgaris. Cell Tissue Res. 182: 93–98.

    Article  PubMed  CAS  Google Scholar 

  • Budelmann, B.U. and Young, J.Z. (1984) The statocyst-oculomotor system of Octopus vulgaris: eye muscles, eye muscle nerves, statocyst nerves, and the oculomotor centre in the central nervous system. Phil. Trans. R. Soc. Lond. B 306: 159–189.

    Article  Google Scholar 

  • Budelmann, B.U. and Young, J.Z. (1985) Central pathways of the nerves of the arms and mantle of Octopus. Phil. Trans. R. Soc. Lond. B 310: 109–122.

    Article  Google Scholar 

  • Budelmann, B.U. and Young, J.Z. (1987) Brain pathways of the brachial nerves of Sepia and Loligo. Phil. Trans. R. Soc. Lond. B 315: 345–352.

    Article  Google Scholar 

  • Budelmann, B.U. and Young, J.Z. (1993) The oculomotor system of decapod cephalopods: eye muscles, eye muscle nerves, and the oculomotor neurons in the central nervous system. Phil. Trans. R. Soc. Lond. B 340: 93–125.

    Article  CAS  Google Scholar 

  • Budelmann, B.U. Sachse, M. and Staudigl, M. (1987) The angular acceleration receptor system of Octopus vulgaris: morphometry, ultrastructure, and neuronal and synaptic organization. Phil. Trans. R. Soc. Lond. B 315: 305–343.

    Article  Google Scholar 

  • Bullock, T.H. (1984). Ongoing compound field potentials from octopus brain are labile and vertebrate-like. Electroencephalogr. Clin. Neurophysiol. 57: 473–483.

    Article  PubMed  CAS  Google Scholar 

  • Bullock, T.H. (1986) “Simple” model systems need comparative studies: differences are as important as commonalities. Trends Neurosci. 9: 470–472.

    Article  Google Scholar 

  • Bullock, T.H. (1993) How are more complex brains different? Brain Behav. Evol. 41: 88–96.

    Article  PubMed  CAS  Google Scholar 

  • Bullock, T.H. and Basar E. (1988) Comparison of ongoing compound field potentials in the brains of invertebrates and vertebrates. Brain Res. Rev. 134: 57–75.

    Article  Google Scholar 

  • Bullock, T.H. and Budelmann, B.U. (1991) Sensory evoked potentials in unanesthetized unrestrained cuttlefish: a new preparation for brain physiology in cephalopods. J. Comp. Physiol. A 168: 141–150.

    Article  PubMed  CAS  Google Scholar 

  • Bullock, T.H. and Horridge, G.A. (1965) Structure and Function of the Nervous Systems of Invertebrates. Freeman, San Francisco and London.

    Google Scholar 

  • Bundgaard, M. and Abbott, N.J. (1992) Fine structure of the blood-brain interface in the cuttlefish Sepia officinalis (Mollusca, Cephalopoda). J. Neurocytol. 21: 260–275.

    Article  PubMed  CAS  Google Scholar 

  • Colmers, W.F. (1981) Afferent synaptic connections between hair cells and the somata of intramacular neurons in the gravity receptor system of the statocyst of Octopus vulgaris. J. Comp. Neurol. 197: 385–394.

    Article  PubMed  CAS  Google Scholar 

  • Cornwell, C.J., Messenger, J.B. and Williamson, R. (1993) Distribution of GABA-like immunoreactivity in the octopus brain. Brain Res. 621: 353–357.

    Article  PubMed  CAS  Google Scholar 

  • Dilly, P.N., Nixon, M. and Young, J.Z. (1977) Mastigoteuthis — the whip-lash squid. J. Zool. Lond. 181: 527–559.

    Article  Google Scholar 

  • Dubas, F., Leonard, R.B. and Hanlon, R.T. (1986a) Chromatophore motoneurones in the brain of the squid, Lolliguncula brevis: an HRP study. Brain Res. 374: 21–29.

    Article  PubMed  CAS  Google Scholar 

  • Dubas, F., Hanlon, R.T., Ferguson, G. and Pinsker, H. (1986b) Localization and stimulation of chromatophore motoneurones in the brain of the squid, Lolliguncula brevis. J. Exp. Biol. 121: 1–25.

    PubMed  CAS  Google Scholar 

  • Fiorito, G. and Scotto, P. (1992) Observational learning in Octopus vulgaris. Science 256: 545–547.

    Article  PubMed  CAS  Google Scholar 

  • Florey, E. (1969) Ultrastructure and function of cephalopod chromatophores. Am. Zool. 9: 429–442.

    PubMed  CAS  Google Scholar 

  • Gilly, W.F. Hopkins, B. and Mackie, G.O. (1991) Development of giant motor axons and neural control of excape responses in squid embryos and hatchlings. Biol. Bull. 180: 209–220.

    Article  Google Scholar 

  • Gillette, R. (1991) The mollucan nervous system. In: C.L. Prosser (ed.): Neural and Integrative Animal Physiology, Wiley-Liss, New York, pp. 574–611.

    Google Scholar 

  • Gleadall, I.G. (1990) Higher motor function in the brain of Octopus: the anterior basal lobe and its analogies with the vertebrate basal ganglia. Ann. Appl. Inf. Sci. 16: 1–30.

    Google Scholar 

  • Gleadall, I.G. Ohtsu, K., Gleadall, E. and Tsukahara, Y. (1993) Screening-pigment migration in the Octopus retina includes control by dopaminergic efferents. J. Exp. Biol. 185: 1–16.

    CAS  Google Scholar 

  • Griffin, L.E. (1900) The anatomy of Nautilus pompilius. Mem. Acad. Sci. Wash. 8: 103–230.

    Google Scholar 

  • Hanlon, R.T. (1990) Maintenance, rearing, and culture of teuthoid and sepioid squids. In: D.L. Gilbert, W.J. Adelman and J.M. Arnold (eds): Squid as Experimental Animals, Plenum Press, New York, pp. 35–62.

    Google Scholar 

  • Hanlon, R.T. and Messenger, J.B. (1988) Adaptive coloration in young cuttlefish (Sepia officinalis L.): The morphology and development of body patterns and their relation to behaviour. Phil. Trans. R. Soc. Lond. B 320: 437–487.

    Article  Google Scholar 

  • Kier, W.M. (1988) The arrangement and function of molluscan muscle. In: E.R. Trueman and M.R. Clarke (eds): The Mollusca, Vol. 11, Form and Function, Academic Press, San Diego, pp. 211–252.

    Google Scholar 

  • Kier, W.M. and A.M. Smith (1990) The morphology and mechanics of Octopus sucker. Biol. Bull.178: 126–136.

    Article  Google Scholar 

  • Kime, D.E. and Messenger, J.B. (1990) Monoamines in the cephalopod CNS: an HPLC analysis. Comp. Biochem. Physiol. 96C: 49–57.

    CAS  Google Scholar 

  • Maddock, L. and Young, J.Z. (1987) Quantitative differences among the brains of cephalopods. J. Zool. Lond. 212: 739–767.

    Article  Google Scholar 

  • Mangold, K. (1989) Le système nerveux. In: P.P. Grassé (ed.): Traité de Zoologie, Vol. 5(4), Céphalopodes, Masson, Paris, pp. 163–240.

    Google Scholar 

  • Marquis, F. (1989) Die Embryonalentwicklung des Nervensystems von Octopus vulgaris Lam. (Cephalopoda, Octopoda), eine histologische Analyse. Verhandl. Naturf. Ges. Basel 99: 23–76.

    Google Scholar 

  • Martin, R. (1977) The giant nerve fibre system of cephalopods. Recent structural findings. Symp. Zool. Soc. Lond. 38: 261–275.

    Google Scholar 

  • Martin, R. and Miledi, R. (1986) The form and dimensions of the giant synapse of squids. Phil. Trans. R. Soc. Lond. B 312: 355–377.

    Article  Google Scholar 

  • Martin, R. and Voigt, K.H. (1987) The neurosecretory system of the octopus vena cava: A neurohemal organ. Experientia 43: 537–543.

    Article  CAS  Google Scholar 

  • Messenger, J.B. (1967) The peduncle lobe: a visuo-motor centre in Octopus. Proc. R. Soc. Lond. B 167: 225–251.

    Article  PubMed  CAS  Google Scholar 

  • Messenger, J.B (1979) The nervous system of Loligo. IV. The peduncle and olfactory lobes. Phil. Trans. R. Soc. Lond. B 285: 275–309.

    Article  Google Scholar 

  • Messenger, J.B. (1991) Photoreception and vision in molluscs. In: J.R. Cronly-Dillon and R.L. Gregory (eds): Evolution of the Eye and the Visual System, McMillan, London, pp. 364–397.

    Google Scholar 

  • Moynihan, M. and Rodaniche, A.F. (1982) The Behavior and Natural History of the Caribbean Reef Squid Sepioteuthis sepioidea. Advances in Ethology 25. Paul Parey, Berlin, Hamburg.

    Google Scholar 

  • Naef, A. (1928) Die Cephalopoden (Embryologie). Fauna e Flora del Golfo di Napoli. Monografia 35(I, 2): 1–363. Bardi, Roma and Friedländer, Berlin.

    Google Scholar 

  • Novicki, A., Messenger, J.B., Budelmann, B.U., Terrell, M.L. and Kadekaro M. (1992) [14C]deoxyglucose labelling of functional activity in the cephalopod central nervous system. Proc. R. Soc. Lond. B 249: 77–82.

    Article  CAS  Google Scholar 

  • Otis, T.S. and Gilly, W.F. (1990) Jet-propelled escape in the squid, Loligo opalescens: Concerted control by giant and non-giant motor axon pathways. Proc. Natl. Acad. Sci. USA 87: 2911–2915.

    Article  PubMed  CAS  Google Scholar 

  • Packard, A. (1972) Cephalopods and fish: the limits of convergence. Biol. Rev. 47: 241–307.

    Article  CAS  Google Scholar 

  • Pfefferkorn, A. (1915) Das Nervensystem der Octopoden. Z. Wiss. Zool. 114: 425–531.

    Google Scholar 

  • Plan, T. (1987) Functional Neuroanatomy of Sensory-Motor Lobes of the Brain of Octopus vulgaris. Dissertation, University of Regensburg, Regensburg, Germany.

    Google Scholar 

  • Preuss, T. and Budelmann, B.U. (1991) A new sense organ in cephalopods: sensory hair cells on the neck of the squid Lollinguncula brevis. Soc. Neurosci. Abstr. 17: 1403.

    Google Scholar 

  • Preuss, T. and Budelmann, B.U. (1995) Proprioceptive hair cells on the neck of the squid Lolliguncula brevis: a sense organ in cephalopods for the control of head-to-trunk position. Phil. Trans. R. Soc. Lond. B (submitted).

    Google Scholar 

  • Rowell, C.H.F. (1963) Excitatory and inhibitory pathways in the arm of Octopus. J. Exp. Biol. 40: 257–270.

    Google Scholar 

  • Rowell, C.H.F. (1966) Activity of interneurons in the arm of Octopus vulgaris in response to tactile stimulation. J. Exp. Biol. 44: 589–605.

    Article  PubMed  CAS  Google Scholar 

  • Quast, M.J., Neumeister, H. and Budelmann, B.U. (1992) Tracking cobalt-labelled nerve pathways through an invertebrate brain (Sepia officinalis, Cephalopoda) by three-dimensional MR microscopy. Soc. Magn. Reson. Med. Abstr. Berlin.

    Google Scholar 

  • Schäfer, W. (1954) Form und Funktion der Brachyurenschere. Abhandl. Senckenberg. Naturforsch. Ges. 489: 1–66.

    Google Scholar 

  • Smith, P.J.S. and Boyle, P.R. (1983) The cardiac innervation of Eledone cirrhosa (Lamarck). (Mollusca: Cephalopoda). Phil. Trans. R. Soc. Lond. B 300: 493–511.

    Article  CAS  Google Scholar 

  • Tansey, E.M. (1979) Neurotransmitters in the cephalopod brain. Comp. Biochem. Physiol. 64C: 173–182.

    CAS  Google Scholar 

  • Tansey, E.M. (1980) Aminergic fluorescence in the cephalopod brain. Phil. Trans. R. Soc. Lond. 5 291: 127–145.

    Google Scholar 

  • Tasaki, K., Tsukahara, Y., Suzuki, H. and Nakaye, T. (1982) Two types of inhibition in the cephalopod retina. In: A. Kaneko, N. Tsukahara and K. Uchizono (eds): Neurotransmitters in the Retina and the Visual Centers, Biomedical Research Suppl., Tokyo, pp. 41–44.

    Google Scholar 

  • Thore, S. (1939) Beiträge zur Kenntnis der vergleichenden Anatomie des zentralen Nervensystems der dibranchiaten Cephalopoden. Pubbl. Staz. Zool. Napoli 17: 313–506.

    Google Scholar 

  • Tompsett, D.H. (1939) Sepia. L.M.B.C. Mem. typ. Br. mar. Pl. Anim. 32: 1–184.

    Google Scholar 

  • Tu, Y. and Budelmann, B.U. (1994) The effect of L-glutamate on the afferent resting activity in the cephalopod statocyst. Brain Res. 642: 47–58.

    Article  PubMed  CAS  Google Scholar 

  • Wells, M.J. (1978) Octopus. Physiology and Behaviour of an Advanced Invertebrate. Chapman and Hall, London.

    Google Scholar 

  • Williamson, R. (1989) Electrophysiological evidence for cholinergic and catecholaminergic efferent transmitters in the statocyst of Octopus. Comp. Biochem. Physiol. 93C: 23–27.

    Google Scholar 

  • Williamson, R. and Budelmann, B.U. (1991) Convergent inputs to octopus oculomotor neurones deomonstrated in a brain slice preparation. Neurosci. Lett. 121: 215–218.

    Article  PubMed  CAS  Google Scholar 

  • Young, J.Z. (1939) Fused neurons and synaptic contacts in the giant nerve fibres of cephalopods. Phil. Trans. R. Soc. Lond. B 229: 465–505.

    Article  Google Scholar 

  • Young, J.Z. (1962) The optic lobes of Octopus vulgaris. Phil. Trans. R. Soc. Lond. B 245: 19–58.

    Article  Google Scholar 

  • Young, J.Z. (1963) The number and sizes of nerve cells in Octopus. Proc. Zool. Soc. Lond. 140: 229–254.

    Google Scholar 

  • Young, J.Z. (1965a) The central nervous system of Nautilus. Phil. Trans. R. Soc. Lond. B 249: 1–25.

    Article  Google Scholar 

  • Young, J.Z. (1965b) The buccal nervous system of Octopus. Phil. Trans. R. Soc. Lond. B 249: 27–43.

    Article  Google Scholar 

  • Young, J.Z. (1967a) The visceral nerves of Octopus. Phil. Trans. R. Soc. Lond. B 253: 1–22.

    Article  Google Scholar 

  • Young, J.Z. (1967b) Some comparisons between the nervous systems of cephalopods and mammals. In: C.A.G. Wiersma (ed.): Invertebrate Nervous Systems. Their Significance for Mammalian Neurophysiology, University of Chicago Press, Chicago and London, pp. 353–362.

    Google Scholar 

  • Young, J.Z. (1971) The Anatomy of the Nervous System of Octopus vulgaris. Clarendon Press, Oxford.

    Google Scholar 

  • Young, J.Z. (1972) The organization of a cephalopod ganglion. Phil Trans. R. Soc. Lond. B 263: 409–429.

    Article  CAS  Google Scholar 

  • Young, J.Z. (1974) The central nervous system of Loligo. I. The optic lobe. Phil. Trans. R. Soc. Lond. B 267: 263–302.

    Article  CAS  Google Scholar 

  • Young, J.Z. (1976a) The “cerebellum” and the control of eye movements in cephalopods. Nature 264: 572–574.

    Article  PubMed  CAS  Google Scholar 

  • Young, J.Z. (1976b) The nervous system of Loligo. II. Suboesophageal centres. Phil. Trans. R. Soc. Lond. 5 274: 101–167.

    Google Scholar 

  • Young, J.Z. (1977a) Brain, behaviour and evolution of cephalopods. Symp. Zool. Soc. Lond. 38: 377–434.

    Google Scholar 

  • Young, J.Z. (1977b) The nervous system of Loligo. III. Higher motor centres: The basal supraoesophageal lobes. Phil. Trans. R. Soc. Lond. B 276: 351–398.

    Article  Google Scholar 

  • Young, J.Z. (1979) The nervous system of Loligo. V. The vertical lobe complex. Phil. Trans. R. Soc. Lond. 5 285: 311–354.

    Google Scholar 

  • Young, J.Z. (1988) Evolution of the cephalopod brain. In: M.R. Clarke and E.R. Trueman (eds): The Mollusca, Vol. 12, Paleontology and Neontology, Academic Press, San Diego, pp. 215–228.

    Google Scholar 

  • Young, J.Z. (1991a) Computation in the learning system of cephalopods. Biol. Bull. 180: 200–208.

    Article  Google Scholar 

  • Young, J.Z. (1991b) Light has many meanings for cephalopods. Visual Neurosci. 7: 1–12.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Budelmann, B.U. (1995). The cephalopod nervous system: What evolution has made of the molluscan design. In: Breidbach, O., Kutsch, W. (eds) The Nervous Systems of Invertebrates: An Evolutionary and Comparative Approach. Experientia Supplementum, vol 72. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9219-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9219-3_7

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9949-9

  • Online ISBN: 978-3-0348-9219-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics