Skip to main content

Flow Patterns, Void Fraction and Pressure Drop in Gas-Liquid Two Phase Flow at Different Pipe Orientations

  • Chapter
  • First Online:
Book cover Frontiers and Progress in Multiphase Flow I

Part of the book series: Frontiers and Progress in Multiphase Flow ((FPMF))

Abstract

This chapter presents an insightful discussion on flow patterns, void fraction and phenomenon of two phase frictional pressure drop in gas-liquid two phase flow. The flow structure of different flow patterns observed in gas-liquid two phase flow at various pipe orientations are described with the aid of flow visualization. This chapter is helpful in understanding the impact of varying flow patterns, pipe diameter and pipe orientation on the void fraction and two phase pressure drop. Additionally, a brief overview of the void fraction, its dependency on the flow patterns and its influence on the hydrostatic pressure drop is presented. A brief synopsis of the two phase void fraction and frictional pressure drop correlations available in the literature is presented. The performance of these correlations is assessed against a comprehensive database for air-water and refrigerant two phase flow conditions. Based on this detailed analysis, the top performing void fraction and pressure drop correlations are identified and recommended for use for these fluid combinations in different two phase flow situations. Finally, application of the recommended correlations is presented in the form of solved problems. It is expected that these solved problems will give readers an idea of selection and implementation of appropriate correlations for different two phase flow conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BCh :

Variable in (Chisholm [20]) correlation

Co :

Distribution parameter

D:

Pipe diameter (m)

f:

Friction factor

Fr:

Froude number (\( Fr = {{G^{2} } \mathord{\left/ {\vphantom {{G^{2} } {(gD\rho^{2} )}}} \right. \kern-0pt} {(gD\rho^{2} )}} \))

g:

Acceleration due to gravity (9.81 m/s2)

G:

Mass flux (kg/m2 s)

Ku:

Kutateladze number as defined by Takeuchi et al. [97]

L:

Pipe length (m)

La:

Laplace number (\( La = {{\sqrt {{\sigma \mathord{\left/ {\vphantom {\sigma {g(\rho_{l} - \rho_{g} )}}} \right. \kern-0pt} {g(\rho_{l} - \rho_{g} )}}} } \mathord{\left/ {\vphantom {{\sqrt {{\sigma \mathord{\left/ {\vphantom {\sigma {g(\rho_{l} - \rho_{g} )}}} \right. \kern-0pt} {g(\rho_{l} - \rho_{g} )}}} } D}} \right. \kern-0pt} D} \))

Nμf :

Viscosity number \( \left( {N_{\mu f} = {{\mu_{l} } \mathord{\left/ {\vphantom {{\mu_{l} } {\left( {\rho_{l} \sigma \sqrt {{\sigma \mathord{\left/ {\vphantom {\sigma {g\Delta \rho }}} \right. \kern-0pt} {g\Delta \rho }}} } \right)^{0.5} }}} \right. \kern-0pt} {\left( {\rho_{l} \sigma \sqrt {{\sigma \mathord{\left/ {\vphantom {\sigma {g\Delta \rho }}} \right. \kern-0pt} {g\Delta \rho }}} } \right)^{0.5} }}} \right) \)

P:

Pressure (Pa)

Re:

Reynolds number (\( \text{Re} = {{\left( {GD} \right)} \mathord{\left/ {\vphantom {{\left( {GD} \right)} \mu }} \right. \kern-0pt} \mu } \))

S:

Slip ratio

U:

Phase velocity (m/s)

Ugm :

Drift velocity (m/s)

We:

Weber number (\( We = {{(G^{2} D)} \mathord{\left/ {\vphantom {{(G^{2} D)} {(\sigma \rho )}}} \right. \kern-0pt} {(\sigma \rho )}} \))

x:

Two phase quality

X :

(Lockhart and Martinelli [66]) parameter

α:

Void fraction

β:

Gas volumetric flow fraction

ρ:

Phase density (kg/m3)

μ:

Phase dynamic viscosity (Pa-s)

θ:

Pipe orientation (degrees)

σ:

Surface tension (N/m)

Φ2 :

Two phase frictional multiplier

a:

Accelerational

atm:

Atmospheric

crit:

Critical

f:

Frictional

g:

Gas

go:

Gas only

h:

Hydrostatic

in:

Inlet

j:

Phase

l:

Liquid

lo:

Liquid only

m:

Mixture

out:

Outlet

s:

Superficial

sys:

System

t:

Total

tp:

Two phase

tt:

Turbulent-turbulent

w:

Water

*:

Non-dimensional parameter

References

  1. W.W. Akers, A. Deans, O.K. Crossee, Condensing heat transfer within horizontal tubes. Chem. Eng. Prog. 55, 171–176 (1959)

    Google Scholar 

  2. S. Al-lababidi, A. Addali, H. Yeung, D. Mba, F. Khan, Gas void fraction measurement in two phase gas liquid slug flow using acoustic emission technology. Trans. ASME 131, 501–507 (2009)

    Google Scholar 

  3. P. Alia, L. Cravarolo, A. Hassid, E. Pedrocchi, Liquid volume fraction in adiabatic two-phase vertical upflow in round conduits C.I.S.E, 1965

    Google Scholar 

  4. M.M. Awad, Y.S. Muzychka, Effective property models for homogeneous two-phase flows. Exp. Thermal Fluid Sci. 33, 106–113 (2008)

    Article  Google Scholar 

  5. S. Badie, C.P. Hale, G.F. Hewitt, Pressure gradient and holdup in horizontal two phase gas-liquid flows with low liquid loading. Int. J. Multiph. Flow 26, 1525–1543 (2000)

    Article  MATH  Google Scholar 

  6. S.G. Bankoff, A variable density single fluid model for two phase flow with particular reference to steam-water flow. J. Heat Transfer 11, 165–172 (1960)

    Google Scholar 

  7. C.J. Barcozy, A systematic correlation for two phase pressure drop. Chem. Eng. Prog. 62(44), 232–249 (1966)

    Google Scholar 

  8. D.R.H. Beattie, S. Sugawara, Steam-water void fraction for vertical upflow in a 73.9 mm pipe. Int. J. Multiph. Flow 12(4), 641–653 (1986)

    Article  Google Scholar 

  9. D.R.H. Beattie, P.B. Whalley, A simple two-phase frictional pressure drop calculation method. Int. J. Multiphase Flow: Bried Commun. 8(1), 83–87 (1982)

    Article  Google Scholar 

  10. H.D. Beggs, An experimental study of two phase flow in inclined pipes. Ph.D. thesis, University of Tulsa, 1972

    Google Scholar 

  11. D. Bestion, The physical clousre laws in the CATHARE code. Nucl. Eng. Des. 124, 229–245 (1990)

    Article  Google Scholar 

  12. S.M. Bhagwat, A.J. Ghajar, Flow patterns and pipe orientation independent semi-empirical void fraction correlation for a gas-liquid two-phase flow based on the concept of drift flux model. Paper presented at the ASME 2012 Summer Heat Transfer Conference, Puerto Rico, 2012

    Google Scholar 

  13. S.M. Bhagwat, A.J. Ghajar, Similarities and differences in the flow patterns and void fraction in vertical upward and downward two phase flow. Exp. Thermal Fluid Sci. 39, 213–227 (2012). doi:10.1016/j.expthermflusci.2012.01.026

    Article  Google Scholar 

  14. H. Blasius, Das Anhlichkeitsgesetz bei Reibungsvorgangen in Flussikeiten Gebiete Ingenieurw 131, 1913

    Google Scholar 

  15. R.H. Bonnecaze, Greskovich E.J. Erskine, Holdup and Pressure Drop for Two Phase Slug Flow in Inclined Pipelines. AIChE 17, 1109–1113 (1971)

    Article  Google Scholar 

  16. C.D. Bowers, P.S. Hrnjak, Determinaiton of void fraction in seperated two phase flows using optical techiniques. Paper presented at the international refrigeration and air-conditioning conference paper 1083, Purdue, 2010

    Google Scholar 

  17. J. Cai, T. Chen, Q. Ye, Void fraction in bubbly and slug flow in downward air-oil two phase flow in vertical tubes. Paper presented at the international symposium on multiphase flow, Beijing, 1997

    Google Scholar 

  18. A. Cavallini, G. Censi, D. Del Col, L. Doretti, G.A. Longo, L. Rossetto, Condensation of halogenated refrigerants inside smooth tubes. HVAC&R Res. 8, 429–451 (2002)

    Article  Google Scholar 

  19. J.J. Chen, A further examination of void fraction in annular two-phase flow. Int. J. Heat Mass Transf. 29, 4269–4272 (1986)

    Google Scholar 

  20. D. Chisholm, Pressure gradients due to the friction during the flow of evaporating two phase mixtures in smooth tubes and channels. Int. J. Heat Mass Transf. 16, 347–358 (1973)

    Article  Google Scholar 

  21. J. Choi, E. Pereyra, C. Sarica, C. Park, J.M. Kang, An efficient drift flux closure relationship to estimate liquid holdups of gas-liquid two phase flow in pipes. Energies 5, 5294–5306 (2012)

    Article  Google Scholar 

  22. R. Chokshi, Prediction of pressure drop and liquid holdup in vertical two phase flow through large diameter tubing. Ph.D. thesis, University of Tulsa, 1994

    Google Scholar 

  23. S.W. Churchill, Friction factor equation spans all fluid- flow regimes. Chem. Eng. 7, 91–92 (1977)

    Google Scholar 

  24. A. Ciccihitti, C. Lombardi, M. Silvestri, R. Soldaini, G. Zavatarelli, Two-phase cooling experiments: pressure drop, heat transfer and burnout measurments. Energ. Nucl. 7, 407–429 (1960)

    Google Scholar 

  25. A. Cioncoloni, J.R. Thome, Void fraction prediction in annular two phase flow. Int. J. Multiph. Flow 43, 72–84 (2012)

    Article  Google Scholar 

  26. N.N. Clark, R.L. Flemmer, Predicting the Holdup in two phase bubble upflow and downflow using the Zuber and Findlay drift flux model. AIChE 31(3), 500–503 (1985)

    Article  Google Scholar 

  27. C.F. Colebrook, Turbulent flow in pipes, with particular reference to the transition between the smooth and rough pipe laws. J. Inst. Civ. Eng. 11, 1938–1939 (1939)

    Google Scholar 

  28. W.F. Davidson, P.H. Hardie, C.G.R. Humphreys, A.A. Markson, A.R. Mumford, T. Ravese, Studies of heat transmission thorugh boiler tubing at pressures from 500–3300 lbs. Trans. ASME 65(6), 553–591 (1943)

    Google Scholar 

  29. R. De Rauz, Taux de vide et glissement dans un ecoulement biphase ascendent et descendent CENG Note TTN 165, 1976

    Google Scholar 

  30. A.E. Dukler, M. Wicks, R.G. Cleveland, Frictional pressure drop in two phase flow: Part A and B. AIChE 10, 38–51 (1964)

    Article  Google Scholar 

  31. K.J. Elkow, Void fraction measurement and Analysis at normal gravity and microgravity conditions. M.S. thesis, University of Saskatchewan, 1995

    Google Scholar 

  32. M. Espedal, K. Bendiksen, Onset of instabilites and slugging in horizontal and near horizontal gas liquid flow. Paper presented at the European two phase flow group meeting, Paris, France, 1989

    Google Scholar 

  33. Y.Q. Fan, Q. Wang, H.Q. Zhang, C. Sarica, Experimental study of air-water and air-oil low liquid loading horizontal two phase flow in pipes, 2007

    Google Scholar 

  34. X.D. Fang, Y. Xu, Z.R. Zhou, New correlations of single phase friciton factor for turbulent pipe flow and evaluation of existing single phase friciton factor correlations. Nucl. Eng. Des. 241, 897–902 (2011)

    Article  Google Scholar 

  35. R.C. Fernandes, Experimental and therotical studies of isothermal upward gas-liquid ffows in vertical tubes. Ph.D. thesis, University of Houston, 1981

    Google Scholar 

  36. M. Fourar, S. Boris, Experimental study of air water two phase flow through a fracture. Int. J. Multiph. Flow 4, 621–637 (1995)

    Article  Google Scholar 

  37. H. Franca, R.T. Lahey, The use of drift flux techniques for the analysis of horizontal two phase flows. Int. J. Multiph. Flow 18, 787–801 (1992)

    Article  MATH  Google Scholar 

  38. L. Friedel, Improved friction pressure drop correlation for horizontal and vertical two phase pipe flow. Eur. Two Phase Flow Group Meet. Pap. 18, 485–492 (1979)

    Google Scholar 

  39. L. Friedel, Two-phase frictional pressure drop correlation for vertical downflow. Ger. Chem. Eng. 8(1), 32–40 (1985)

    Google Scholar 

  40. F. Garcia, R. Garcia, J.C. Padrino, C. Mata, J.L. Trallero, D.D. Joseph, Power law and composite power law friciton factor correlations for laminar turbulent gas liquid flow in horizontal pipe lines. Int. J. Multiph. Flow 29(10), 1605–1624 (2003)

    Article  MATH  Google Scholar 

  41. A.J. Ghajar, S.M. Bhagwat, Effect of void fraction and two-phase dynamic viscosity models on prediction of hydrostatic and frictional pressure drop in vertical upward gas-liquid two phase flow. Heat Transfer Eng. 34(13), 1044–1059 (2013)

    Article  Google Scholar 

  42. A.J. Ghajar, C.C. Tang, Advances in void fraction, flow pattern maps and non-boiling heat transfer two phase flow in pipes with various inclinations. Adv. Multiph. Flow Heat Transfer 1, 1–52 (2009) (Chapter 1)

    Google Scholar 

  43. A.J. Ghajar, C.C. Tang, Void fraction and flow patterns of two phase flow in upward, downward vertical and horizontal pipes. Adv. Multiph. Flow Heat Transfer 4, 175–201 (2012) (Chapter 7)

    Google Scholar 

  44. H. Goda, T. Hibiki, S. Kim, M. Ishii, J. Uhle, Drift flux model for downward two phase flow. Int. J. Heat Mass Transf. 46, 4835–4844 (2003)

    Article  Google Scholar 

  45. L.E. Gomez, O. Shoham, Z. Schmidt, R.N. Choshki, T. Northug, Unified mechanistic model for steady state two phase flow: horizontal to upward vertical flow. Soc. Petrol. Eng. 5, 339–350 (2000)

    Google Scholar 

  46. D.M. Graham, T.A. Newell, J.C. Chato, Experimental investigation of void fraction during refrigerant condensation. University of Illinois, Urbana Champaign, 1997

    Google Scholar 

  47. E.J. Greskovich, W.T. Cooper, Correlation and prediction of gas-liquid holdups in inclined upflows. AIChE 21, 1189–1192 (1975)

    Article  Google Scholar 

  48. R. Gronnerud, Investigation of liquid holdup, flow resistance and heat transfer in circulation type of evaporators, part iv: two phase flow resistance in boiling refrigerants Annexe 1972-1, Bull de l’Inst Froid, 1979

    Google Scholar 

  49. A.R. Hasan, Void fraction in bubbly and slug flow in downward vertical and inclined systems. Soc. Petrol. Eng. Prod. Facil. 10(3), 172–176 (1995)

    Google Scholar 

  50. A. Hernandez, Experimental research on downward two phase flow. Paper presented at the SPE annual technical conference and exhibition San Antanio, TX-U.S.A, 2002

    Google Scholar 

  51. G.F. Hewitt, C.J. Martin, N.S. Wilkes, Experimental and modeling studies of churn-annular flow in the region between flow reversal and the pressure drop minimum. Physicochem. Hydrodyn. 6(1/2), 69–86 (1985)

    Google Scholar 

  52. T. Hibiki, M. Ishii, One-dimensional drift flux model and constitutive equations for relative motion between phases in various two-phase flow regimes. Int. J. Heat Mass Transf. 46, 4935–4948 (2003)

    Article  MATH  Google Scholar 

  53. D. Jowitt, C.A. Cooper, K.G. Pearson, The thetis 80 % blocked cluster experiments part 5: level swell experiments safety and engineering science, 1984

    Google Scholar 

  54. D.S. Jung, R. Radermacher, Prediction of pressure drop during horizontal annular flow boiling of pure and mixed refrigerants. Int. J. Heat Mass Transf. 32(12), 2435–2446 (1989)

    Article  Google Scholar 

  55. M. Kaji, B.J. Azzopardi, The effect of pipe diameter on the structure of gas-liquid flow in vertical pipes. Int. J. Multiph. Flow 36(4), 303–313 (2010)

    Article  Google Scholar 

  56. I. Kataoka, M. Ishii, Drift flux model for large diameter pipe and new correlation for pool void fraction. Int. J. Heat Mass Transfer 30, 1927–1939 (1987)

    Article  Google Scholar 

  57. K. Kawanishi, Y. Hirao, A. Tsuge, An experimental study on drift flux parameters for two phase flow in vertical round tubes. Nucl. Eng. Des. 120, 447–458 (1990)

    Article  Google Scholar 

  58. K.D. Kerpel, B. Ameel, C. T’Joen, H. Caniere, M. De-Paepe, Flow regime based calibration of a capacitive void fraction sensor for small diameter tubes. Int. J. Refrig. 36(2), 390–401 (2013)

    Article  Google Scholar 

  59. S.L. Kokal, J.F. Stainslav, An experimental study of two phase flow in slightly inclined pipes II: liquid holdup and pressure drop. Chem. Eng. Sci. 44, 681–693 (1989)

    Article  Google Scholar 

  60. S. Koyoma, J. Lee, R. Yonemoto, An investigation on void fraction of vapor-liquid two phase flow for smooth and microfin tubes with R134a at adiabatic condition. Int. J. Multiph. Flow 30, 291–310 (2004)

    Article  Google Scholar 

  61. C.W. Lau, Bubbly and slug flow pressure drop in inclined pipe. BS thesis, MIT, 1972

    Google Scholar 

  62. T.W. Lim, Flow pattern and pressure drop of pure refrigerants and their mixtures in horizontal tube. J. Mech. Sci. Technol. 19(12), 2289–2295 (2005)

    Article  Google Scholar 

  63. T.W. Lim, Y. Fujita, Flow pattern and pressure drop in flow boiling of pure refrigerants and their mixture in horizontal tube. Mem. Fac. Eng., Kyushu Univ. 62(1), 41–54 (2002)

    Google Scholar 

  64. S. Lin, C.C.K. Kwok, R.Y. Li, Z.H. Chen, Z.Y. Chen, Local frictional pressure drop during vaporization of R12 through capillary tubes. Int. J. Multiph. Flow 17, 95–102 (1991)

    Article  MATH  Google Scholar 

  65. S. Lips, J.P. Meyer, Experimental study of convective condensation in an inclined smooth tube. part II: inclination effect on pressure drop and void fraction. Int. J. Heat Mass Transf. 55, 405–412 (2012)

    Article  Google Scholar 

  66. R.W. Lockhart, R.C. Martinelli, Proposed correlation of data for isothermal two phase, two component flow in pipes. Chem. Eng. Prog. 45, 39–48 (1949)

    Google Scholar 

  67. A. Lorenzi, G. Stogia, Downward two phase flow: experimental investigation. Energia Nucleare 23(7), 396–401 (1976)

    Google Scholar 

  68. Z.S. Mao, A.E. Dukler, The myth of churn flow. Int. J. Multiph. Flow 19(2), 377–383 (1993)

    Article  MATH  Google Scholar 

  69. R.C. Martinelli, D.B. Nelson, Prediction of pressure drop during forced circulation boiling of water. Trans. ASME 90, 695–702 (1948)

    Google Scholar 

  70. L. Mattar, G.A. Gregory, Air-oil slug flow in upward inclined pipe—I slug velocity, holdup and pressure gradient. J. Can. Pet. Technol. 13, 69–76 (1974)

    Google Scholar 

  71. W.H. McAdams, W.K. Woods, L.V. Heroman, Vaporization inside horizontal tubes—II benzene oil mixtures. Trans. ASME 64, 193–200 (1942)

    Google Scholar 

  72. K. Minami, J.P. Brill, Liquid holdup in wet gas pipelines. Soc. Petrol. Eng. 2, 36–44 (1987)

    Google Scholar 

  73. K. Mishima, T. Hibiki, Some characteristics of air-water two phase flow in small diameter vertical tubes. Int. J. Multiph. Flow 22(4), 703–712 (1996)

    Article  MATH  Google Scholar 

  74. H. Mukherjee, An experimental study of inclined two phase flow. Ph.D. thesis, The University of Tulsa, 1979

    Google Scholar 

  75. H. Muller-Steinhagen, K. Heck, A simple friction pressure drop correlation for two-phase flow in pipes. Chem. Eng. Process 20, 297–308 (1986)

    Article  Google Scholar 

  76. V.T. Nguyen, Two phase gas-liquid cocurrent flow : an investigation of holdup, pressure drop and flow patterns in a pipe at various inclinations. Ph.D. thesis, The University of Auckland, 1975

    Google Scholar 

  77. C.R. Nichols, A study of vertical flow of air-water mixture. Ph.D. thesis, University of Maryland, 1965

    Google Scholar 

  78. R. Oliemans, Two phase flow in gas transmission pipelines. Paper presented at the Pteroleum Division ASME Meeting, Mexico, 1976

    Google Scholar 

  79. N.K. Omebere-Iyari, B.J. Azzopardi, A study of flow patterns for gas-liquid flow in small diameter tubes. Chem. Eng. Res. Des. 85(A2), 180–192 (2007)

    Article  Google Scholar 

  80. O. Oshinowo, Two phase flow in a vertical tube coil. Ph.D. thesis, University of Toronto, 1971

    Google Scholar 

  81. M. Ottens, H.C.J. Hoefsloot, P.J. Kamersma, Correlations predicting liquid holdup and pressure gradient in steady state nearly horizontal cocurrent gas-liquid pipe flow. Inst. Chem. Eng. Trans. IChemE 79 (A), 581–592 (2001)

    Google Scholar 

  82. G. Paras, Characterization of downward two phase flow by neutron noise analysis. MS thesis, University of Washington, 1982

    Google Scholar 

  83. A. Permoli, D. Francesco, A. Prima, An emperical correlation for evaluating two phase mixture density under adiabatic conditions. Paper presented at the European two phase flow group meeting Milan, Italy, 1970

    Google Scholar 

  84. J.M. Quiben, J.R. Thome, Flow pattern based two phase frictional pressure drop model for horizontal tubes. Part II: new phenomenological model. Int. J. Heat Fluid Flow 28, 1060–1072 (2007)

    Article  Google Scholar 

  85. R. Revellin, J.R. Thome, Adiabatic two phase frictional pressure drop in microchannels. Exp. Thermal Fluid Sci. 31, 673–685 (2007)

    Article  Google Scholar 

  86. S.Z. Rouhani, E. Axelsson, Calculation of void volume fraction in the subcooled and quality boiling regions. Int. J. Heat Mass Transf. 13, 383–393 (1970)

    Article  Google Scholar 

  87. P.S. Sacks, Measured characteristics of adiabatic and condensing single component two phase flow of regrigerant in a 0.377 inch diameter horizontal tube. Paper presented at the ASME winter annual meeting, Houston, Texas, 1975

    Google Scholar 

  88. K. Sekoguchi, Y. Saito, T. Honda, JSME Reprint No. 700. 7:83, 1970

    Google Scholar 

  89. T.A. Shedd, Void fraction and pressure drop measurements for refrigerant R410a flows in small diameter tubes, 2010

    Google Scholar 

  90. D.G. Shipley, Two phase flow in large diameter pipes. Chem. Eng. Sci. 39, 163–165 (1982)

    Article  Google Scholar 

  91. S.L. Smith, Void fraction in two phase flow: a correlation based on an equal velocity head model. Inst. Mech. Eng. 184(Part 1), 647–657 (1969)

    Article  Google Scholar 

  92. A.L. Souza, M.M. Pimenta, Prediction of pressure drop during horizontal two phase flow of pure and mixed refrigerants. Paper presented at the ASME conference on cavitation and multiphase flow, HTD, 1995

    Google Scholar 

  93. P.L. Spedding, J.J. Chen, Holdup in two phase flow. Int. J. Multiph. Flow 10, 307–339 (1984)

    Article  Google Scholar 

  94. M. Sujumnong, Heat transfer, pressure drop and void fraction in two phase two component flow in vertical tube. Ph.D. thesis, The University of Manitoba, 1997

    Google Scholar 

  95. K.H. Sun, R.B. Duffey, C.M. Peng, The prediction of two phase mixture level and hydrodynamically controlled dryout under low flow conditions. Int. J. Multiph. Flow 7, 521–543 (1981)

    Article  MATH  Google Scholar 

  96. L. Sun, K. Mishima, Evaluation analysis of prediction methods for two phase flow pressure drop in mini channels. Int. J. Multiph. Flow 35, 47–54 (2009)

    Article  Google Scholar 

  97. K. Takeuchi, M.Y. Young, L.E. Hochreiter, Generalized drift flux correlation for vertical flow. Nucl. Sci. Eng. 112, 170–180 (1992)

    Google Scholar 

  98. J.R.S. Thom, Prediction of pressure drop during forced circulation boiling of water. Int. J. Heat Mass Transf. 7(7), 709–724 (1964)

    Article  Google Scholar 

  99. T.N. Tran, Y.C. Chu, M.W. Wambsganss, D.M. France, Two phase pressure drop of refrigerants during flow boiling in small channels: an experimental investigation and correlation development. Int. J. Multiph. Flow 26, 1739–1754 (2000)

    Article  MATH  Google Scholar 

  100. X. Tu, P.S. Hrnjak, Pressure drop characteristics of R134a two phase flow in a horizontal rectangular microchannel. Paper presented at the international mechanical engineering congress and exposition, New Orleans, USA, 2002

    Google Scholar 

  101. J.M. Turner, G.B. Wallis, The separate cylinders model of two phase flow Thayer’s School of Engineering, Dartmouth College, 1965

    Google Scholar 

  102. K. Usui, K. Sato, Vertically downward two phase flow (I) void distribution and average void fraction. J. Nucl. Sci. Technol. 26(7), 670–680 (1989)

    Article  Google Scholar 

  103. C.C. Wang, S.K. Chiang, Y.J. Chang, T.W. Chung, Two phase flow resistance of refrigerants R22, R410A and R407C in small diameter tubes. Inst. Chem. Eng., Trans. IChemE 79, 553–560 (2001)

    Article  Google Scholar 

  104. L. Wojtan, T. Ursenbacher, J.R. Thome, Measurement of dynamic void fractions in stratified types of flow. Exp. Thermal Fluid Sci. 29, 383–392 (2005)

    Article  Google Scholar 

  105. M.A. Woldesemayat, A.J. Ghajar, Comparison of void fraction correlations for different flow patterns in horizontal and upward inclined pipes. Int. J. Multiph. Flow 33, 347–370 (2007)

    Article  Google Scholar 

  106. S. Wongwises, M. Pipathttakul, Flow pattern, pressure drop and void fraction of gas-liquid two phase flow in an inclined narrow annular channel. Exp. Thermal Fluid Sci. 30, 345–354 (2006)

    Article  Google Scholar 

  107. Y. Xu, X. Fang, A new correlation of two phase frictional pressure drop for evaporating two phase flow in pipes. Int. J. Refrig. 35, 2039–2050 (2012)

    Google Scholar 

  108. Y. Xu, X. Fang, X. SU, Z. Zhou, W. Chen, Evaluation of frictional pressure drop correlations for two-phase flow in pipes. Nucl. Eng. Des. 253, 86–97 (2012)

    Google Scholar 

  109. D.A. Yashar, T.A. Newell, J.C. Chato, Experimental investigation of void fraction during horizontal flow in smaller diameter refrigeration applications. ACRC TR-141 University of Illinois, Urbana Champaign, 1998

    Google Scholar 

  110. J. Yijun, K. Rezkallah, A study on void fraction in vertical co-current upward and downward two-phase gas-liquid flow—I: experimental results. Chem. Eng. Commun. 126, 221–243 (1993)

    Article  Google Scholar 

  111. S.H. Yoon, E.S. Cho, Y.W. Hwang, M.S. Kim, K. Min, Y. Kim, Characteristics of evaporative heat transfer and pressure drop of carbon dioxide and correlation development. Int. J. Refrig. 27, 111–119 (2004)

    Article  Google Scholar 

  112. W. Zhang, T. Hibiki, K. Mishima, Correlations of two phase frictional pressure drop and void fraction in mini-channel. Heat Mass Transf. 53, 433–465 (2010)

    Google Scholar 

  113. H.D. Zhao, K.C. Lee, D.H. Freeston, Geothermal two phase flow in horizontal pipes. Paper presented at the proceedings of world geothermal congress, Tokyo, Japan, 2000

    Google Scholar 

  114. S.M. Zivi, Estimation of steady state steam void fraction by means of the principle of minimum entropy production. Trans. ASME, J. Heat Transfer 86, 247–252 (1964)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. John Thome (EPFL, Switzerland), Dr. Josua Meyer (University of Pretoria, South Africa), Dr. Somchai Wongwises (KMUTT, Thailand) and Dr. Neima Brauner (Tel Aviv University, Israel) for sharing void fraction and pressure drop data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshin J. Ghajar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ghajar, A.J., Bhagwat, S.M. (2014). Flow Patterns, Void Fraction and Pressure Drop in Gas-Liquid Two Phase Flow at Different Pipe Orientations. In: Cheng, L. (eds) Frontiers and Progress in Multiphase Flow I. Frontiers and Progress in Multiphase Flow. Springer, Cham. https://doi.org/10.1007/978-3-319-04358-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04358-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04357-9

  • Online ISBN: 978-3-319-04358-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics