Skip to main content

Mereology in Engineering and Computer Science

  • Chapter
  • First Online:
Mereology and the Sciences

Part of the book series: Synthese Library ((SYLI,volume 371))

Abstract

Mereology as an alternative to naive/formal Set Theory, predominant in formalizations of mathematical and informatic theories, is especially suited to discussions of relations among mass things, e.g., collections of them or spatial objects like figures, solids, etc., but, it finds also essential applications in other areas of engineering and comp uter science like assembling and design, planning, data classification, reasoning by means of cognitive schemes and in many-agent systems. Our chapter aims at presenting specimens of the role mereology plays in all of these areas of research. Out of a vast accumulated knowledge and of a plethora of applications, we strive to extract a skeleton of basic facts and exemplary applications in order to convey to the reader the elegance of solutions employing tools of mereology. We begin with a discussion of principles of Mereology, by giving a fairly detailed account of the pioneering formalization by Stanislaw Lesniewski in Sect. 2, followed by an account of Mereology based on the notion of a connection in Sect. 3. These two sections give a foundation for further developments. An extension of Mereology called Rough Mereology, which may be regarded as Mereology fused in a sense with Fuzzy and Rough Set Theories, is discussed in Sect. 3. An important, both for theory and applications, topological ingredient of Mereology is brought to the reader attention in Sect. 4, and on it, the Part I, Foundations, closes. In Part II, devoted to applications, we discuss the notion of an artifact, along with artifact design and assembling, in Sect. 5 and Sect. 6 brings forth a discussion of the role of Mereology in Spatial Reasoning and its applications like descriptions of shape and orientation and spatial calculi like RCC. A related topic of Planning and Navigation by means of mereological tools is presented in Sect. 7 for autonomous mobile agents (robots), and, in Sect. 8 we give an account of applications of Mereology in Knowledge Engineering, centered on Mereological Granular Computing in synthesis of data classifiers. Finally, Sect. 9 gives an account of the mereological perceptron networks, reasoning in many-agent systems by mereological tools for fusion of knowledge, and an account of ideas for Mereological Granular Logics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agah, A. (1996). Robot teams, human workgroups and animal sociobiology: A review of research on natural and artificial multi–agent autonomous systems. Advanced Robotics, 10, 523–545.

    Article  Google Scholar 

  • Agah, A., & Bekey, G. A. (1997). Tropism based cognition: A novel software architecture for agents in colonies. Journal of Experimental and Theoretical Artificial Intelligence, 9(2–3), 393–404.

    Article  Google Scholar 

  • Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. In Proceedings ACM SIGMOD conference, Washington, DC (pp. 207–216).

    Google Scholar 

  • Amarel, S. (1991). Panel on AI and design. In Proceedings of 12th international conference on AI, Sydney (pp. 563–565).

    Google Scholar 

  • Aristotle. (1989). Prior analytics. Indianapolis: Hackett.

    Google Scholar 

  • Aristotle. (2004). Metaphysics (W. Ross, Trans.). Book Delta, 1203b. Classical Library. Available: http://www.classicallibrary.org/aristotle/metaphysics/

  • Arkin, R. C. (1998). Behavior-based robotics. Cambridge: MIT.

    Google Scholar 

  • Arkin, H., & Colton, R. R. (1970). Statistical methods. New York: Barnes and Noble.

    Google Scholar 

  • Artiemjew, P. (2007). Classifiers from granulated data sets: Concept dependent and layered granulation. In Proceedings RSKD’07. Workshop at ECML/PKDD’07, Warsaw (pp. 1–9). Warsaw: Warsaw University Press.

    Google Scholar 

  • Asama, H., Matsumoto, A., & Ishida, Y. (1989). Design of an autonomous and distributed robot system: ACTRESS. In Proceedings IEEE/RSJ IROS, Tsukuba (pp. 283–290).

    Google Scholar 

  • Asher, N., Aurnague, M., Bras, M., Sablayrolles, P., & Vieu, L. (1995) De l’espace-temps dans l’analyse du discours (Rapport interne IRIT/95-08-R). Institut de Recherche en Informatique, Univ. Paul Sabatier, Toulouse.

    Google Scholar 

  • Asher, N., & Vieu, L. (1995). Toward a geometry of common sense: A semantics and a complete axiomatization of mereotopology. In Proceedings IJCAI’95, Montreal. San Mateo: Morgan Kaufmann.

    Google Scholar 

  • Aurnague, M., & Vieu, L. (1995). A theory of space-time for natural language semantics. In K. Korta & J. M. Larrazábal (Eds.), Semantics and pragmatics of natural language: Logical and computational aspects (ILCLI series, pp. 69–126). San Sebastian: I. University of Pais Vasco.

    Google Scholar 

  • Aurnague, M., Vieu, L., & Borillo, A. (1997). Representation formelle des concepts spatiaux dans la langue. In M. Denis (Ed.), Langage et Cognition Spatiale (pp. 69–102). Paris: Masson.

    Google Scholar 

  • Baker, L. R. (2004). The ontology of artifacts. Philosophical Explorations, 7(2), 99–111.

    Article  Google Scholar 

  • Balcar, B., & Štěpánek, P. (1986). Teorie Množin. Praha: Academia.

    Google Scholar 

  • Balch, T., & Arkin, R. C. (1998). Behavior–based formation control for multiagent robot teams. IEEE Transactions on Robotics and Automation, 14(12), 926–931.

    Article  Google Scholar 

  • Bazan, J. G. (1998). A comparison of dynamic and non–dynamic rough set methods for extracting laws from decision tables. In L. Polkowski & A. Skowron (Eds.), Rough sets in knowledge discovery 1 (pp. 321–365). Heidelberg: Physica Verlag.

    Google Scholar 

  • Björner, D., & Eir, A. (2010). Compositionality: Ontology and mereology of domains. In D. Dams, U. Hannemann, & M. Steffen (Eds.), Concurrency, compositionality, and correctness (Lecture notes in computer science, Vol. 5930, pp. 22–60). Berlin: Springer.

    Google Scholar 

  • Bocheński, I. M. (1954). Die Zeitgenössichen Denkmethoden. Bern: A. Francke A. G.

    Google Scholar 

  • Booch, G. (1994). Object–oriented analysis and design with applications. Menlo Park: Addison–Wesley.

    Google Scholar 

  • Boothroyd, G. (2005). Assembly automation and product design (2nd ed.). Boca Raton: Taylor and Francis.

    Book  Google Scholar 

  • Boothroyd, G., Dewhurst, P., & Knight, W. (2002). Product design for manufacture and assembly (2nd ed.). New York: Marcel Dekker.

    Google Scholar 

  • Borgo, S., & Vieu, L. (2009). Artefacts in formal ontology. In A. Meijers (Ed.), Handbook of philosophy of technology and engineering sciences (pp. 273–308). Amsterdam/London/Boston: Elsevier.

    Chapter  Google Scholar 

  • Bruning, J. L., & Kintz, B. L. (1997). Computational handbook of statistics (4th ed.). Columbus: Allyn and Bacon.

    Google Scholar 

  • Caloud, P., Choi, W., Latombe, J.-C., Le Pape, C., & Yin, M. (1990). Indoor automation with many mobile robots. In Proceedings IEEE/RSJ IROS, Tsuchiura (pp. 67–72).

    Google Scholar 

  • Canny, J. F. (1988). The complexity of robot motion planning. Cambridge: MIT.

    Google Scholar 

  • Casati, R., Smith, B., & Varzi, A. C. (1998). Ontological tools for geographic representation. In N. Guarino (Ed.), Formal ontology in information systems. Amsterdam: IOS.

    Google Scholar 

  • Casati, R., & Varzi, A. C. (1999). Parts and places: The structures of spatial representations. Cambridge: MIT.

    Google Scholar 

  • Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L. E., & Thrun, S. (2005). Principles of robot motion: Theory, algorithms, and implementations. Cambridge: MIT.

    Google Scholar 

  • Clarke, B. L. (1981). A calculus of individuals based on connection. Notre Dame Journal of Formal Logic, 22(2), 204–218.

    Google Scholar 

  • Clay, R. (1974). Relation of Leśniewski’s mereology to Boolean algebra. The Journal of Symbolic Logic, 39, 638–648.

    Article  Google Scholar 

  • Cohn, A. G. (1996). Calculi for qualitative spatial reasoning. In J. Calmet, J. A. Campbell, & J. Pfalzgraf (Eds.), Artificial intelligence and symbolic mathematical computation (Lecture notes in computer science, Vol. 1138, pp. 124–143) Berlin: Springer.

    Google Scholar 

  • Cohn, A. G., Gooday, J. M., Bennett, B., & Gotts, N. M. (1996). A logical approach to representing and reasoning about space. In J. Calmet, J. A. Campbell, & J. Pfalzgraf (Eds.), Artificial intelligence and symbolic mathematical computation (Lecture notes in computer science, Vol. 1138, pp. 124–143). Berlin: Springer.

    Google Scholar 

  • Cohn, A. G., & Gotts, N. M. (1996). Representing spatial vagueness: A mereological approach. In Principles of knowledge representation and reasoning. Proceedings of the 5th international conference KR’96, Boston (pp. 230–241). San Francisco: Morgan Kaufmann.

    Google Scholar 

  • Cohn, A. G., Randell, D., Cui, Z., & Bennett B. (1993). Qualitative spatial reasoning and representation. In N. Carrete & M. Singh (Eds.), Qualitative reasoning and decision technologies (pp. 513–522). CIMNE: Barcelona.

    Google Scholar 

  • Cohn, A. G., & Varzi, A. C. (1998). Connections relations in mereotopology. In H. Prade (Ed.), Proceedings ECAI’98: 13th European conference on artificial intelligence, Brighton (pp. 150–154). Chichester: Wiley.

    Google Scholar 

  • de Laguna, Th. (1922). Point, line and surface as sets of solids. The Journal of Philosophy, 19, 449–461.

    Article  Google Scholar 

  • Dietterich, T. G. (2000). Ensemble methods in machine learning. In: 1st international workshop on multiple classifier systems (Lecture notes in computer science, Vol. 1857, pp. 1–15). Berlin: Springer.

    Book  Google Scholar 

  • Egenhofer, M. J. (1991). Reasoning about binary topological relations. In O. Gunther, H. & Schek (Eds.), Advances in spatial databases: SSD’91 proceedings, Zurich (pp. 143–160). Berlin.

    Google Scholar 

  • Egenhofer, M. J., & Golledge, R. G. (Eds.). (1997). Spatial and temporal reasoning in geographic information systems. Oxford: Oxford University Press.

    Google Scholar 

  • Fitting, M. C. (2004). First–order intensional logic. Annals of Pure and Applied Logic, 127, 171–193.

    Article  Google Scholar 

  • Forrest, P. (2010) The identity of indiscernibles. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Winter 2012 ed.). http://plato.stanford.edu/archives/win2012/entries/identity-indiscernible/.

  • Frank, A. U., & Campari, I. (Eds.). Spatial information theory: A theoretical basis for GIS (Lecture notes in computer science, Vol. 716). Berlin: Springer.

    Google Scholar 

  • Frank, A. U., & Kuhn, W. (Eds.). Spatial information theory: A theoretical basis for GIS (Lecture notes in computer science, Vol. 988). Berlin: Springer.

    Google Scholar 

  • Fredslund, J., & Matarić, M. (2002). A general algorithm for robot formation using local sensing and minimal communication. IEEE Transactions on Robotics and Automation, 18(5), 837–846.

    Article  Google Scholar 

  • Frege, G. (1903). Grundgesetze der Arithmetic. II. Jena: Verlag Hermann Pohle.

    Google Scholar 

  • Fukuda, T., & Nakagawa, S. (1987). A dynamically reconfigurable robotic system (concept of a system and optimal configurations). In International conference on industrial electronics, control, and instrumentation (IECON’87), Cambridge (pp. 588–595).

    Google Scholar 

  • Gallin, D. (1975). Intensional and higher–order modal logic. Amsterdam: North Holland.

    Google Scholar 

  • Glasgow, J. (1995). A formalism for model–based spatial planning. In: A. U. Frank & W. Kuhn (Eds.), Spatial information theory – A theoretical basis for GIS (Lecture notes in computer science, Vol. 988, pp. 501–518). Berlin: Springer.

    Chapter  Google Scholar 

  • Gödel, K. (1951). The consistency of the axiom of choice and of the generalized continuum hypothesis with the axioms of set theory (Annals of mathematics studies). Princeton: Princeton University Press.

    Google Scholar 

  • Gotts, N. M., & Cohn, A. G. (1995). A mereological approach to representing spatial vagueness. In Working papers. The ninth international workshop on qualitative reasoning, QR’95, Amsterdam.

    Google Scholar 

  • Gotts, N. M., Gooday, J. M., & Cohn, A. G. (1996). A connection based approach to commonsense topological description and reasoning. The Monist, 79(1), 51–75.

    Article  Google Scholar 

  • Grossberg, S. (1973). Contour enhancement, short–term memory, and constancies in reverberating neural networks. Studies in Applied Mathematics, 52, 213–257.

    Article  Google Scholar 

  • Grzymala–Busse, J. W. (1992). LERS – A system for learning from examples based on rough sets. In R. Słowiński (Ed.), Intelligent decision support: Handbook of advances and applications of the rough sets theory (pp. 3–18). Dordrecht: Kluwer.

    Google Scholar 

  • Grzymala–Busse, J. W., & Hu, M. (2000). A comparison of several approaches to missing attribute values in data mining. In Lecture notes in artificial intelligence (LNAI) (Vol. 2005, pp. 378–385). Berlin: Springer.

    Google Scholar 

  • Guarino, N. (1994). The ontological level. In R. Casati, B. Smith, G. White (Eds.), Philosophy and the cognitive sciences. Vienna: Hoelder-Pichler-Tempsky.

    Google Scholar 

  • Hájek, P. (1998). Metamathematics of fuzzy logic. Dordrecht: Kluwer.

    Book  Google Scholar 

  • Hilpinen, R. (1995). Belief systems as artifacts. The Monist, 78, 136–155.

    Article  Google Scholar 

  • Hirtle, S. C., & Frank, A. U. (Eds.). Spatial information theory: A theoretical basis for GIS (Lecture notes in computer science, Vol. 1329). Berlin: Springer.

    Google Scholar 

  • Nguyen, S. H. (2000). Regularity analysis and its applications in data mining. In: L. Polkowski, S. Tsumoto, & T. Y. Lin (Eds.), Rough set methods and applications: New developments in knowledge discovery in information systems (pp. 289–378). Heidelberg: Physica Verlag.

    Chapter  Google Scholar 

  • Hughes, G. E., & Creswell, M. J. (1996). A new introduction to modal logic. London: Routledge.

    Book  Google Scholar 

  • Huntsberger, T., Stroupe, A., Aghazarian, H., Garrett, M., Younse, P., & Powell, M. (2007). TRESSA: Teamed robots for exploration and science of steep areas. Journal of Field Robotics, 24(11/12), 1015–1031.

    Article  Google Scholar 

  • Iwanuś, B. (1973). On Leśniewski’s elementary ontology. Studia Logica, XXXI, 73–119.

    Google Scholar 

  • Jennings, J. S., Whelan, G., & Evans, W. F. (2001). Cooperative search and rescue with a team of mobile robots. In SPIE (Vol. 4364). Orlando: Aerosense.

    Google Scholar 

  • Khatib, O. (1986). Real–time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research, 5, 90–98.

    Article  Google Scholar 

  • Kim, K.-Y., Yang, H., & Kim D.-W. (2008). Mereotopological assembly joint information representation for collaborativbe product design. Robotics and Computer-Integrated Manufacturing, 24(6), 744–754.

    Article  Google Scholar 

  • Kube, C. R., & Zhang, H. (1996). The use of perceptual cues in multi–robot box–pushing. In Proceedings IEEE international conference on robotics and automation (ICRA’96), Minneapolis (pp. 2085–2090).

    Google Scholar 

  • Kuipers, B. J. (1994). Qualitative reasoning: Modeling and simulation with incomplete knowledge. Cambridge: MIT.

    Google Scholar 

  • Leibniz, G. W. (1969). Discourse on metaphysics. In L. Loemker, G. W. Leibniz (Eds.), Philosophical papers and letters (2nd ed.). Dordrecht: D. Reidel.

    Google Scholar 

  • Lejewski, C. Z. (1958). On Leśniewski’s ontology. Ratio, I(2), 150–176.

    Google Scholar 

  • Leonard, H. S., & Goodman, N. (1940). The calculus of individuals and its uses. Journal of Symbolic Logic, 5, 45–55.

    Article  Google Scholar 

  • Leśniewski, S. (1916). Podstawy Ogólnej Teoryi Mnogości, I (Foundations of General Set Theory, I, in Polish). Prace Polskiego Koła Naukowego w Moskwie, Sekcya Matematyczno–przyrodnicza, No. 2, Moscow.

    Google Scholar 

  • Leśniewski, S. (1927). O podstawach matematyki (On foundations of mathematics, in Polish). Przegla̧d Filozoficzny, XXX, 164–206; Przegla̧d Filozoficzny, XXXI, 261–291 (1928); Przegla̧d Filozoficzny, XXXII, 60–101 (1929); Przegla̧d Filozoficzny, XXXIII, 77–105 (1930); Przegla̧d Filozoficzny, XXXIV, 142–170 (1931).

    Google Scholar 

  • Leśniewski, S. (1930). Über die Grundlagen der Ontologie. C.R. Soc. Sci. Lettr. Varsovie Cl. III, 23 Anneé, 111–132.

    Google Scholar 

  • Leśniewski, S. (1982). On the foundations of mathematics. Topoi, 2, 7–52.

    Google Scholar 

  • Ling, C.-H. (1965). Representation of associative functions. Publicationes Mathematicae Debrecen, 12, 189–212.

    Google Scholar 

  • Łukasiewicz, J. (1939). On Aristotle’s syllogistic. CR Acad. Polon. Lettr. Cracoviae, 44, 220–226.

    Google Scholar 

  • Łukasiewicz, J. (1957). Aristotle’s syllogistic from the standpoint of modern formal logic (2nd ed.). Oxford: Oxford University Press.

    Google Scholar 

  • Łukasiewicz, J. (1970). Die Logischen Grundlagen der Warcheinlichtkeitsrechnung. Cracow (1913); cf. [engl. trans]: L. Borkowski (Ed.), Jan Łukasiewicz: Selected works (pp. 16–63). Amsterdam/Warsaw: North Holland/Polish Scientific Publishers.

    Google Scholar 

  • Margolis, E., & Laurence, S. (Eds.). (2007). Creations of the mind: Theories of artifacts and their representation. Oxford/New York: Oxford University Press.

    Google Scholar 

  • Matarić, M. (1993). Kin recognition, similarity and group behavior. In: Proceedings of 15th annual cognitive society conference, Boulder (pp. 705–710). Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Matarić, M. (1994). Interaction and intelligent behavior. PhD dissertation. MIT EECS Department.

    Book  Google Scholar 

  • Matarić, M. (1997). Behavior–based control: Examples from navigation, learning, and group behavior. Journal of Experimental and Theoretical Artificial Intelligence, 9(2,3), 323–336.

    Google Scholar 

  • McCulloch, W., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 7, 115–133.

    Article  Google Scholar 

  • Michalski, R. (1990). Pattern recognition as rule–guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI, 2(4), 349–361.

    Article  Google Scholar 

  • Miéville, D. (1984). Un Developpement des Systemes Logiques de Stanislas Leśniewski. Prototétique-Ontologie-Méréologie. Bern/Frankfurt: Peter Lang.

    Google Scholar 

  • Ośmiałowski, P. (2009a). On path planning for mobile robots: Introducing the mereological potential field method in the framework of mereological spatial reasoning. Journal of Automation, Mobile Robotics and Intelligent Systems (JAMRIS), 3(2), 24–33.

    Google Scholar 

  • Ośmiałowski, P. (2009b). A case of planning and programming of a concurrent behavior: Planning and navigating with formations of robots. In Proceedings of CSP 2009. Concurrency, specification, programming, Kraków. Warsaw University Press.

    Google Scholar 

  • Ośmiałowski, P. (2011). Planning and navigation for mobile autonomous robots. Warszawa: PJIIT Publishers.

    Google Scholar 

  • Ośmiałowski, P., & Polkowski, L. (2009). Spatial reasoning based on rough mereology: Path planning problem for autonomous mobile robots. Transactions on rough sets XII (Lecture notes in computer science, Vol. 6190, pp. 143–169). Berlin: Springer.

    Google Scholar 

  • Parker, L. E. (1997). Cooperative motion control for multi–target observations. In IEEE/JRS international conference on intelligent robots and systems (JRS IROS’97), Grenoble (pp. 1591–1598).

    Google Scholar 

  • Parker, L. E. (1998). ALLIANCE: An architecture for fault tolerant multirobot cooperation. IEEE Transactions on Robotics and Automation, 14(2), 220–240.

    Article  Google Scholar 

  • Pawlak, Z. (1991). Rough sets: Theoretical aspects of reasoning about data. Dordrecht: Kluwer.

    Book  Google Scholar 

  • Pawlak, Z., Skowron, A. (1993). A rough set approach for decision rules generation. In Proceedings of IJCAI’93 workshop W12, Chambéry. The Management of Uncertainty in AI, France; and ICS Research Report 23/93. Warsaw University of Technology, Institute of Computer Science.

    Google Scholar 

  • Plutarch. (1936). The E at Delphi. In Moralia (Vol. 5). Cambridge: Harvard University Press.

    Google Scholar 

  • Polkowski, L. (2002). Rough sets: Mathematical foundations. Heidelberg: Physica Verlag/ Springer.

    Book  Google Scholar 

  • Polkowski, L. (2003). A rough set paradigm for unifying rough set theory and fuzzy set theory. Fundamenta Informaticae, 54, 67–88; and: Proceedings RSFDGrC03, Chongqing (Lecture notes in artificial intelligence, Vol. 2639, pp. 70–78). Berlin: Springer.

    Google Scholar 

  • Polkowski, L. (2004a). Toward rough set foundations. Mereological approach. In Proceedings RSCTC04, Uppsala (Lecture notes in artificial intelligence, Vol. 3066, pp. 8–25). Berlin: Springer.

    Google Scholar 

  • Polkowski, L. (2004b). A note on 3–valued rough logic accepting decision rules. Fundamenta Informaticae, 61, 37–45.

    Google Scholar 

  • Polkowski, L. (2005a). Formal granular calculi based on rough inclusions. In Proceedings of IEEE 2005 conference on granular computing GrC05, Beijing (pp. 57–62). IEEE.

    Google Scholar 

  • Polkowski, L. (2005b). Rough–fuzzy–neurocomputing based on rough mereological calculus of granules. International Journal of Hybrid Intelligent Systems, 2, 91–108.

    Article  Google Scholar 

  • Polkowski, L. (2007). Granulation of knowledge in decision systems: The approach based on rough inclusions. The method and its applications. In Proceedings RSEISP 07, Warsaw, June 2007 (Lecture notes in artificial intelligence, Vol. 4585, pp. 271–279). Berlin: Springer.

    Google Scholar 

  • Polkowski, L. (2008). A unified approach to granulation of knowledge and granular computing based on rough mereology: A survey. In W. Pedrycz, A. Skowron, & V. Kreinovich (Eds.), Handbook of granular computing (pp. 375–400). Chichester: Wiley.

    Chapter  Google Scholar 

  • Polkowski, L. (2009a). Granulation of knowledge: Similarity based approach in information and decision systems. In R. A. Meyers (Ed.), Springer encyclopedia of complexity and system sciences. Berlin: Springer. Article 00 788.

    Google Scholar 

  • Polkowski, L. (2009b). Data-mining and knowledge discovery: Case based reasoning, nearest neighbor and rough sets. In R. A. Meyers (Ed.), Encyclopedia of complexity and system sciences. Berlin: Springer. Article 00 391.

    Google Scholar 

  • Polkowski, L. (2011). Approximate reasoning by parts. An introduction to rough mereology. Berlin: Springer.

    Book  Google Scholar 

  • Polkowski, L., & Artiemjew, P. (2007). On granular rough computing with missing values. In Lecture notes in artificial intelligence (LNAI) (Vol. 4585, pp. 271–279). Berlin: Springer.

    Google Scholar 

  • Polkowski, L., & Ośmiałowski, P. (2008). A framework for multi–agent mobile robotics: Spatial reasoning based on rough mereology in player/stage system. In Lecture notes in artificial intelligence (LNAI) (Vol. 5306, pp. 142–149). Berlin: Springer.

    Google Scholar 

  • Polkowski, L., & Ośmiałowski, P. (2010). Navigation for mobile autonomous robots and their formations: An application of spatial reasoning induced from rough mereological geometry. In A. Barrera (Ed.), Mobile robots navigation (pp. 329–354). Zagreb: InTech.

    Google Scholar 

  • Polkowski, L., & Semeniuk–Polkowska, M. (2005). On rough set logics based on similarity relations. Fundamenta Informaticae, 64, 379–390.

    Google Scholar 

  • Polkowski, L., & Semeniuk–Polkowska, M. (2010). Boundaries, borders, fences, hedges. In Proceedings CS&P 2010 (concurrency, specification and programming), Humboldt University, Berlin.

    Google Scholar 

  • Polkowski, L., & Skowron, A. (1994). Rough mereology. In Proceedings of ISMIS’94 (Lecture notes in artificial intelligence, Vol. 869, pp. 85–94). Berlin: Springer.

    Google Scholar 

  • Polkowski, L., & Skowron, A. (1997). Rough mereology: A new paradigm for approximate reasoning. International Journal of Approximate Reasoning, 15(4), 333–365.

    Article  Google Scholar 

  • Polkowski, L., & Skowron, A. (1998). Rough mereological foundations for design, analysis, synthesis and control in distributed systems. An International Journal of Information Sciences, 104(1–2), 129–156.

    Google Scholar 

  • Polkowski, L., & Skowron, A. (1999a). Grammar systems for distributed synthesis of approximate solutions extracted from experience. In Gh. Paun & A. Salomaa (Eds.), Grammatical models of multi-agent systems (pp. 316–333). Amsterdam: Gordon and Breach.

    Google Scholar 

  • Polkowski, L., & Skowron, A. (1999b). Towards adaptive calculus of granules. In L. A. Zadeh & J. Kacprzyk (Eds.), Computing with words in information/intelligent systems 1. Foundations. Heidelberg: Physica Verlag.

    Google Scholar 

  • Polkowski, L., & Skowron, A. (2001). Rough mereological calculi of granules: A rough set approach to computation. An International Journal of Computational Intelligence, 17(3), 472–492.

    Article  Google Scholar 

  • Ramón y Cajal, S. (1889). Sur la morphologie et les connexions des elements de la retine des oiseaux. Anatomisches Anzeiger, 4, 111–121.

    Google Scholar 

  • Randell, D., Cui, Z., & Cohn, A. G. (1992). A spatial logic based on regions and connection. In Proceedings of the 3rd international conference on principles of knowledge representation and reasoning KR’92, Cambridge (pp. 165–176). San Mateo: Morgan Kaufmann.

    Google Scholar 

  • Reynolds, C. (1987). Flocks, herds and schools. A distributed behavioral model. Computer Graphics, 21(4), 25–34.

    Article  Google Scholar 

  • Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408.

    Article  Google Scholar 

  • RSES: Rough Set Exploration System. (2012). A system for data analysis; available at http://logic.mimuw.edu.pl/~rses/; last entered 25. 03. 2014.

  • Russell, S. J., & Norvig, P. (2009). Artificial intelligence: Modern approach (3rd ed.). Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Salustri, F. A. (2002). Mereotopology for product modelling. A new framework for product modelling based on logic. Journal of Design Research, 2, 22.

    Google Scholar 

  • Seibt, J. (2009). Forms of emergent interaction in general process theory. Synthese, 1666, 479–512.

    Article  Google Scholar 

  • SEP (Stanford Encyclopedia of Philosophy). (2012). Artifact; available http://plato.stanford.edu/entries/artifact; last entered 25. 03. 2014.

  • Shreider, Yu. (1960). Equality, resemblance, order. Moscow: Mir Publishers.

    Google Scholar 

  • Simons, P. (2003). Parts. A sudy in ontology. Oxford: Clarendon.

    Google Scholar 

  • Skowron, A. (1993). Boolean reasoning for decision rules generation. In Proceedings of ISMIS’93, Trondheim (Lecture notes in artificial intelligence, Vol. 689, pp. 295–305). Berlin: Springer.

    Google Scholar 

  • Skowron, A., Rauszer C. (1992). The discernibility matrices and functions in decision systems. In R. Słowiński (Ed.) Intelligent decision support. Handbook of applications and advances of the Rough sets theory (pp. 311–362). Dordrecht: Kluwer.

    Google Scholar 

  • Słupecki, J. (1949–1950). On Aristotle’s syllogistic. Studia philosophica (Poznań), 4, 275–300.

    Google Scholar 

  • Słupecki, J. (1955). S. Leśniewski’s calculus of names. Studia Logica, III, 7–72.

    Google Scholar 

  • Smith, B. (1989). Logic and formal ontology. In J. N. Mohanty, & W. McKenna, (Eds.), Husserl’s phenomenology: A textbook (pp. 29–67). Lanham: University Press of America.

    Google Scholar 

  • Smith, B. (1996). Mereotopology: A theory of parts and boundaries. Data and Knowledge Engineering, 20, 287–303.

    Article  Google Scholar 

  • Smith, B., & Varzi, A. C. (1997). Fiat and bona fide boundaries. Philosophy and Phenomenological Research, 60(2), 401–420.

    Article  Google Scholar 

  • Sobociński, B. (1949). L’analyse de l’antinomie Russellienne par Leśniewski. Methodos, I, 94–107, 220–228, 308–316; Methodos, II, 237–257 (1950).

    Google Scholar 

  • Sobociński, B. (1954–1955). Studies in Leśniewski’s mereology. Yearbook for 1954–55 of the polish society of art and sciences abroad, Vol. V (1955), London (pp. 34–43).

    Google Scholar 

  • Srzednicki, J., Surma, S. J., Barnett, D., & Rickey, V. F. (Eds.). (1992). Collected works of Stanisław Leśniewski. Dordrecht: Kluwer.

    Google Scholar 

  • Stone, P. (2000). Layered learning in multiagent systems: A winning approach to robotic soccer. Cambridge: MIT.

    Book  Google Scholar 

  • Tarski, A. (1929). Les fondements de la géométrie des corps. Supplement to Annales de la Société Polonaise de Mathématique, 7, 29–33.

    Google Scholar 

  • Tarski, A. (1935). Zur Grundlegung der Booleschen Algebra. I. Fundamenta Mathematicae, 24, 177–198.

    Google Scholar 

  • Tarski, A. (1937). Appendix E. In J. H. Woodger (Ed.), The axiomatic method in biology (p. 160). Cambridge: Cambridge University Press.

    Google Scholar 

  • Tarski, A. (1959). What is elementary geometry? In L. Henkin, P. Suppes, & A. Tarski (Eds.), The axiomatic method with special reference to geometry and physics (pp. 16–29). Amsterdam: North-Holland.

    Google Scholar 

  • Turing, A. M. (1948). Intelligent machinery. A report. National Physical Laboratory, Mathematical Division.

    Google Scholar 

  • UC Irvine Repository. (2012). Available at http://archive.uci.edu/ml/datasets; last entered 25. 03. 2014.

  • Uny, C. Y., Fukunaga, A. S., & Kahng, A. B. (1997). Cooperative mobile robotics: Antecedents and directions. Autonomous Robots, 4, 7–27.

    Article  Google Scholar 

  • Van Benthem, J. (1983). The logic of time. Dordrecht: Reidel.

    Book  Google Scholar 

  • Van Benthem, J. (1988). A manual of intensional logic. Stanford: CSLI Stanford University.

    Google Scholar 

  • Varzi, A. C. (2008). The extensionality of parthood and composition. The Philosophical Quarterly, 58, 108–133.

    Article  Google Scholar 

  • Werbos, P. J. (1994). The Roots of backpropagation: From ordered derivatives to neural networks and political forecasting. New York: Wiley.

    Google Scholar 

  • Whitehead, A. N. (1916). La théorie relationniste de l’espace. Revue de Métaphysique et de Morale, 23, 423–454.

    Google Scholar 

  • Whitehead, A. N. (1919). An enquiry concerning the principles of human knowledge. Cambridge: Cambridge University Press.

    Google Scholar 

  • Whitehead, A. N. (1920). The concept of nature. Cambridge: Cambridge University Press.

    Google Scholar 

  • Whitehead, A. N. (1929). Process and reality: An essay in cosmology. New York: Macmillan.

    Google Scholar 

  • Woodger, J. H. (1937). The axiomatic method in biology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Woodger, J. H. (1939). The technique of theory construction. In R. Carnap et al. (Eds.), International encyclopedia of unified science, II (Vol. 5, pp. 1–81). Chicago: Chicago University Press.

    Google Scholar 

  • Wróblewski, J. (2004). Adaptive aspects of combining approximation spaces. In: S. K. Pal, L. Polkowski, & A. Skowron (Eds.), Rough neural computing: Techniques for computing with words (pp. 139–156). Berlin: Springer

    Chapter  Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.

    Article  Google Scholar 

  • Zadeh, L. A. (1979). Fuzzy sets and information granularity. In M. Gupta, R. Ragade, & R. R. Yager (Eds.), Advances in fuzzy set theory and applications, (pp. 3–18). Amsterdam: North–Holland.

    Google Scholar 

  • Zadeh, L. A. (2004). Toward a unified theory of uncertainty. In Proceedings of IPMU 2004, Perugia (Vol. 1, pp. 3–4).

    Google Scholar 

  • Zermelo, E. (1908). Untersuchungen über die Grundlgen der Mengenlehre I. Mathematische Annalen, 65, 261–281.

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to extend thanks to Dr Piotr Artiemjew and Dr Paul Ośmiałowski for submitting experimental material in research on, respectively, granular classifiers and behavioral robotics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lech Polkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Polkowski, L. (2014). Mereology in Engineering and Computer Science. In: Calosi, C., Graziani, P. (eds) Mereology and the Sciences. Synthese Library, vol 371. Springer, Cham. https://doi.org/10.1007/978-3-319-05356-1_10

Download citation

Publish with us

Policies and ethics