Skip to main content

Selenium in Plants

  • Chapter
  • First Online:
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 76))

Abstract

Selenium (Se) and sulfur (S) are chemically similar. Most plants cannot discriminate between the two, with the exception of Se hyperaccumulator species, which preferentially accumulate Se over S. Genetic engineering of various genes from the S/Se assimilation pathway has successfully enhanced plant Se tolerance, accumulation, and volatilization, in both laboratory and field. Results from genomic studies are beginning to shed better light on Se tolerance and (hyper)accumulation mechanisms, pointing to particular growth regulators (jasmonic acid, salicylic acid, ethylene) and constitutive upregulation of S/Se uptake and assimilation pathways. Selenium accumulation in plants profoundly affects ecological interactions. It protects plants from herbivores via both deterrence and toxicity, as well as from microbial pathogens. High-Se plants do not deter pollinators. Selenium hyperaccumulators enhance Se levels in neighboring plants, which can have a negative (allelopathic) effect if these are Se sensitive, but a positive effect if they are Se tolerant, via protection from herbivores. Thus, in seleniferous ecosystems Se hyperaccumulators may favor Se-resistant ecological partners while selecting against Se-sensitive partners. In this way, hyperaccumulators may affect species composition at multiple trophic levels, as well as Se cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson JW (1993) Selenium interactions in sulfur metabolism. In: De Kok LJ (ed) Sulfur nutrition and assimilation in higher plants—regulatory, agricultural and environmental aspects. SPB Academic, The Netherlands, pp 49–60

    Google Scholar 

  • Bañuelos GS, Vickerman DB, Trumble JT, Shannon MC, Davis CD, Finley JW, Mayland HF (2002) Biotransfer possibilities of selenium from plants used in phytoremediation. Int J phytoremediation 4:315–331

    Article  Google Scholar 

  • Bañuelos G, Terry N, LeDuc DL, Pilon-Smits EAH, Mackey B (2005) Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium contaminated sediment. Environ Sci Technol 39:1771–1777

    Article  PubMed  Google Scholar 

  • Bañuelos G, LeDuc DL, Pilon-Smits EAH, Tagmount A, Terry N (2007) Transgenic Indian mustard overexpressing selenocysteine lyase, selenocysteine methyltransferase, or methionine methyltransferase exhibit enhanced potential for selenium phytoremediation under field conditions. Environ Sci Technol 41:599–605

    Article  PubMed  Google Scholar 

  • Beath OA, Gilbert CS, Eppson HF (1939a) The use of indicator plants in locating seleniferous areas in the Western United States. I. General. Am J Bot 26:257–269

    Article  CAS  Google Scholar 

  • Beath OA, Gilbert CS, Eppson HF (1939b) The use of indicator plants in locating seleniferous areas in the Western United States. II. Correlation studies by states. Am J Bot 26:296–315

    Article  CAS  Google Scholar 

  • Broyer TC, Huston RP, Johnson CM (1972) Selenium and nutrition of Astragalus. 1. Effects of selenite or selenate supply on growth and selenium content. Plant Soil 36:635–649

    Article  CAS  Google Scholar 

  • Cartes P, Gianfreda L, Mora ML (2005) Uptake of selenium and its antioxidant activity in ryegrass when applied as selenate and selenite forms. Plant Soil 276:359–367

    Article  CAS  Google Scholar 

  • de Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N (1999) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 119:565–574

    Article  PubMed  PubMed Central  Google Scholar 

  • Djanaguiraman M, Durga Devi D, Shanker AK, Sheeba JA, Bangarusamy U (2005) Selenium—an antioxidative protectant in soybean during senescence. Plant Soil 272:77–86

    Article  CAS  Google Scholar 

  • El Mehdawi AF, Quinn CF, Pilon-Smits EAH (2011a) Effects of selenium hyperaccumulation on plant–plant interactions: evidence for elemental allelopathy. New Phytol 191:120–131

    Article  PubMed  Google Scholar 

  • El Mehdawi AF, Quinn CF, Pilon-Smits EAH (2011b) Selenium hyperaccumulators facilitate selenium-tolerant neighbors via phytoenrichment and reduced herbivory. Curr Biol 21:1440–1449

    Article  PubMed  Google Scholar 

  • El Mehdawi AF, Cappa JJ, Fakra SC, Self J, Pilon-Smits EAH (2012) Interactions of selenium and non-accumulators during co-cultivation on seleniferous or non-seleniferous soil—the importance of having good neighbors. New Phytol 194:264–277

    Article  PubMed  Google Scholar 

  • Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C, Lahner B, Wood KV, Harris HH, Pickering IJ, Salt DE (2004) Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol 4:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Mehdawi AF, Pilon-Smits EAH (2012) Ecological aspects of plant selenium hyperaccumulation. Plant Biol 14:1–10

    Article  PubMed  CAS  Google Scholar 

  • Feist LJ, Parker DR (2001) Ecotypic variation in selenium accumulation among populations of Stanleya pinnata. New Phytol 149:61–69

    Article  CAS  Google Scholar 

  • Freeman JL, Zhang LH, Marcus MA, Fakra S, McGrath SP, Pilon-Smits EAH (2006a) Spatial imaging, speciation and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiol 142:124–134

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Freeman JL, Quinn CF, Marcus MA, Fakra S, Pilon-Smits EAH (2006b) Selenium tolerant diamondback moth disarms hyperaccumulator plant defense. Curr Biol 16:2181–2192

    Article  PubMed  CAS  Google Scholar 

  • Freeman JL, Tamaoki M, Stushnoff C, Quinn CF, Cappa JJ, Devonshire J, Fakra S, Marcus MA, McGrath S, Van Hoewyk D, Pilon-Smits EAH (2010) Molecular mechanisms of selenium tolerance and hyperaccumulation in Stanleya pinnata. Plant Physiol 153:1630–1652

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Freeman JL, Marcus MA, Fakra SC, Devonshire J, McGrath SP, Pilon-Smits EAH (2012) Seeds of Selenium Hyperaccumulators Stanleya pinnata and Astragalus bisulcatus are colonized by Se-resistant, Se-excluding wasp and beetle herbivores. PLoS One 7(12):e50516

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fu L-H, Wang X-F, Eyal Y, She Y-M, Donald LJ, Standing KG, Ben-Hayyim G (2002) A selenoprotein in the plant kingdom: mass spectrometry confirms that an opal codon (UGA) encodes selenocysteine in Chlamydomonas reinhardtii glutathione peroxidase. J Biol Chem 277:25983–25991

    Article  PubMed  CAS  Google Scholar 

  • Galeas ML, Zhang LH, Freeman JL, Wegner M, Pilon-Smits EAH (2007) Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related non-accumulators. New Phytol 173:517–525

    Article  PubMed  CAS  Google Scholar 

  • Garifullina GF, Owen JD, Lindblom S-D, Tufan H, Pilon M, Pilon-Smits EAH (2003) Expression of a mouse selenocysteine lyase in Brassica juncea chloroplasts affects selenium tolerance and accumulation. Physiol Plant 118:538–544

    Article  CAS  Google Scholar 

  • Ge HH, Cai X-J, Tyson JF, Uden PC, Denover ER, Block E (1996) Identification of selenium species in selenium-enriched garlic, onion and broccoli using high-performance ion chromatography with inductively coupled plasma mass spectrometry detection. Anal Commun 33:279–281

    Article  CAS  Google Scholar 

  • Hanson BR, Garifullina GF, Lindblom SD, Wangeline A, Ackley A, Kramer K, Norton AP, Lawrence CB, Pilon-Smits EAH (2003) Selenium accumulation protects Brassica juncea from invertebrate herbivory and fungal infection. New Phytol 159:461–469

    Article  CAS  Google Scholar 

  • Hanson BR, Lindblom SD, Loeffler ML, Pilon-Smits EAH (2004) Selenium protects plants from phloem-feeding aphids due to both deterrence and toxicity. New Phytol 162:655–662

    Article  CAS  Google Scholar 

  • Hartikainen H (2005) Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem Med Biol 18:309–318

    Article  PubMed  CAS  Google Scholar 

  • Hladun KR, Smith BH, Mustard JA, Morton RR, Trumble JT (2012) Selenium toxicity to honey bee (Apis mellifera L.) pollinators: effects on behaviors and survival. PLoS One 7(4):e34137

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kong LA, Wang M, Bi DL (2005) Selenium modulates the activities of antioxidant enzymes, osmotic homeostasis and promotes the growth of sorrel seedlings under salt stress. Plant Growth Regul 45:155–163

    Article  CAS  Google Scholar 

  • Lauchli A (1993) Selenium in plants: uptake, functions, and environmental toxicity. Bot Acta 106:455–468

    Article  CAS  Google Scholar 

  • LeDuc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP, AbdelSamie M, Chiang C-Y, Tagmount A, deSouza MP, Neuhierl B, Bock A, Caruso JA, Terry N (2004) Overexpression of selenocysteine methyltransferase in arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol 135:377–383

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • LeDuc DL, AbdelSamie M, Montes-Bayón M, Wu CP, Reisinger SJ, Terry N (2006) Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard. Environ Pollut 144:70–76

    Article  PubMed  CAS  Google Scholar 

  • Lindblom SD, Valdez-Barillas JR, Fakra SC, Marcus MA, Wangeline AL, Pilon-Smits EAH (2013) Influence of microbial associations on selenium localization and speciation in roots of Astragalus and Stanleya hyperaccumulators. Environ Exp Bot 88:33–42

    Article  CAS  Google Scholar 

  • Lyi SM, Heller LI, Rutzke M, Welch RM, Kochian LV, Li L (2005) Molecular and biochemical characterization of the selenocysteine Se-methyltransferase gene and Se-methylselenocysteine synthesis in broccoli. Plant Physiol 138:409–420

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Meija J, Montes-Bayón M, LeDuc DL, Terry N, Caruso J (2002) Simultaneous monitoring of volatile selenium and sulfur species from Se accumulating plants (wild-type and genetically modified) by GC-MS and GC-ICP-MS using SPME for sample introduction. Anal Chem 74:5837–5844

    Article  PubMed  CAS  Google Scholar 

  • Montes-Bayón M, LeDuc DL, Terry N, Caruso J (2002) Selenium speciation in wild-type and genetically modified Se accumulating plants with HPLC separation and ICP-MS/ES-MS detection. J Anal At Spectrom 17:872–879

    Article  Google Scholar 

  • Neuhierl B, Böck A (1996) On the mechanism of selenium tolerance in selenium accumulating plants. Purification and characterization of a specific selenocysteine methyltransferase from cultured cells of Astragalus bisulcatus. Eur J Biochem 239:235–238

    Article  PubMed  CAS  Google Scholar 

  • Pilon M, Owen JD, Garifullina GF, Kurihara T, Mihara H, Esaki N, Pilon-Smits EAH (2003) Enhanced selenium tolerance and accumulation in transgenic Arabidopsis thaliana expressing a mouse selenocysteine lyase. Plant Physiol 131:1250–1257

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pilon-Smits EAH (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  PubMed  CAS  Google Scholar 

  • Pilon-Smits EAH, Hwang S, Lytle CM, Zhu Y, Tai JC, Bravo RC, Chen Y, Leustek T, Terry N (1999) Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol 119:123–132

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pilon-Smits EAH, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274

    Article  PubMed  CAS  Google Scholar 

  • Prins CN, Hantzis LJ, Quinn CF, Pilon-Smits EAH (2011) Effects of Selenium accumulation on reproductive functions in Brassica juncea and Stanleya pinnata. J Exp Bot 247(62):5633–5640

    Article  Google Scholar 

  • Quinn CF, Prins CN, Freeman JL, Gross AM, Hantzis LJ, Reynolds RJB, Yang S, Covey PA, Bañuelos GS, Pickering IJ, Pilon-Smits EAH (2011a) Selenium accumulation in flowers and its effects on pollination. New Phytol 192:727–737

    Article  PubMed  CAS  Google Scholar 

  • Quinn CF, Wyant K, Wangeline AL, Shulman J, Galeas ML, Valdez JR, Paschke MW, Pilon-Smits EAH (2011b) Enhanced decomposition of selenium hyperaccumulator litter in a seleniferous habitat—evidence for specialist decomposers. Plant Soil 341:51–61

    Article  CAS  Google Scholar 

  • Rayman MP (2005) Selenium in cancer prevention: a review of the evidence and mechanism of action. Proc Nutr Soc 64:527–542

    Article  PubMed  CAS  Google Scholar 

  • Sors TG, Ellis DR, Salt DE (2005) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 86:373–389

    Article  PubMed  CAS  Google Scholar 

  • Stadtman TC (1990) Selenium biochemistry. Annu Rev Biochem 59:111–127

    Article  PubMed  CAS  Google Scholar 

  • Stadtman TC (1996) Selenocysteine. Annu Rev Biochem 65:83–100

    Article  PubMed  CAS  Google Scholar 

  • Tamaoki M, Freeman JL, Pilon-Smits EAH (2008) Cooperative ethylene and jasmonic acid signaling regulates selenite resistance in Arabidopsis thaliana. Plant Physiol 146:1219–1230

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Terry N, Zayed AM, de Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432

    Article  PubMed  CAS  Google Scholar 

  • Valdez Barillas JR, Quinn CF, Freeman JL, Lindblom SD, Marcus MS, Fakra SC, Gilligan TM, Alford ER, Wangeline AL, Pilon-Smits EAH (2012) Selenium distribution and speciation in hyperaccumulator Astragalus bisulcatus and associated ecological partners. Plant Physiol 159:1834–1844

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Hoewyk D (2013) A tale of two toxicities: malformed selenoproteins and oxidative stress both contribute to selenium stress in plants. Ann Bot 112:965–972

    Article  PubMed  Google Scholar 

  • Van Hoewyk D, Garifullina GF, Ackley AR, Abdel-Ghany SE, Marcus MA, Fakra S, Ishiyama K, Inoue E, Pilon M, Takahashi H, Pilon-Smits EAH (2005) Overexpression of AtCpNifS enhances selenium tolerance and accumulation in Arabidopsis. Plant Physiol 139:1518–1528

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Hoewyk D, Abdel-Ghany SE, Cohu C, Herbert S, Kugrens P, Pilon M, Pilon-Smits EAH (2007) The Arabidopsis cysteine desulfurase CpNifS is essential for maturation of iron-sulfur cluster proteins, photosynthesis, and chloroplast development. Proc Natl Acad Sci U S A 104:5686–5691

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Van Hoewyk D, Takahashi H, Hess A, Tamaoki M, Pilon-Smits EAH (2008) Transcriptome and biochemical analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis. Physiol Plant 132:236–253

    PubMed  Google Scholar 

  • Van Huysen T, Abdel-Ghany S, Hale KL, LeDuc D, Terry N, Pilon-Smits EAH (2003) Overexpression of cystathionine-γ-synthase in Indian mustard enhances selenium volatilization. Planta 218:71–78

    Article  PubMed  Google Scholar 

  • Van Huysen T, Terry N, Pilon-Smits EAH (2004) Exploring the selenium phytoremediation potential of transgenic Brassica juncea overexpressing ATP sulfurylase or cystathionine γ-synthase. Int J Phytoremediation 6:111–118

    Article  PubMed  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Bowen HC, Marshall B, Broadley MR (2007) Extraordinarily high leaf selenium to sulfur ratios define ‘Se-accumulator’ plants. Ann Bot 100:111–118

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang Y, Gladyshev VN (2009) Comparative genomics of trace elements: emerging dynamic view of trace element utilization and function. Chem Rev 109:4828–4861

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Byrne PF, Pilon-Smits EAH (2006a) Mapping quantitative trait loci associated with selenate tolerance in Arabidopsis thaliana. New Phytol 170:33–42

    Article  PubMed  CAS  Google Scholar 

  • Zhang L-H, Ackley AR, Pilon-Smits EAH (2006b) Variation in selenium tolerance and accumulation among nineteen Arabidopsis ecotypes. J Plant Physiol 164:327–336

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for Se research by Elizabeth A. H. Pilon-Smits was provided by the National Science Foundation (grant # IOS-0817748).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. H. Pilon-Smits .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pilon-Smits, E.A.H. (2015). Selenium in Plants. In: Lüttge, U., Beyschlag, W. (eds) Progress in Botany. Progress in Botany, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-319-08807-5_4

Download citation

Publish with us

Policies and ethics