Skip to main content

2014 | OriginalPaper | Buchkapitel

2. Photovoltaic Energy Conversion

verfasst von : Wolfgang Tress

Erschienen in: Organic Solar Cells

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter provides an introduction to the basic principles of solar energy conversion including its thermodynamic limits. We discuss the optical and electrical requirements for an ideal photovoltaic device and show examples of possible realizations based on semiconductors. To recall the basics, a brief review on semiconductor physics with emphasis on the p-n junction is given. We discuss the role of the electrochemical potential as driving force for the conversion of sunlight into electricity. We conclude with estimations on the maximum power-conversion efficiency for a single band-edge absorber and introduce approaches for achieving it or even going beyond it. Readers without any background in solid state physics might consider consulting an introductory textbook while reading this chapter. If the reader comes to the conclusion that his/her background in physics is not sufficient, he might consider to skip this chapter and directly start with Chap. 3, as a detailed understanding of thermodynamics is not required to follow most of the elaborations on the working principle of organic solar cells in subsequent chapters. The reader interested in the fundamental laws of solar energy conversion should follow this chapter and be able to answer the following questions afterwards: (a) What is the thermodynamic limit of solar-thermal energy conversion with a device located on the earth surface? What is the role of entropy? (b) Why is the power-conversion efficiency of a solar cell based on a single semiconductor limited to 33 %? What tradeoffs have to be made? (c) Where is the “maximum” of the solar spectrum located? What are possibilities of expressing spectra (e.g. from the sun) considering energy versus wavelength or photon fluxes versus intensity fluxes (irradiance)? (d) What are the main optical and electrical properties of semiconductors and how can they be derived? (e) What are the relations between Fermi levels and charge carrier densities? (f) What are the driving forces for the movement of charge carriers? What is the concept of quasi-Fermi levels? (g) What is the effect of recombination on the photovoltage of a solar cell? Which loss processes are unavoidable? (h) How does a p-n junction solar cell work? Are there alternative architectures? (i) What are the basic requirements for a solar cell? Consider the role of selective contacts and the built-in electric field. (j) Why should a good solar cell show a high electroluminescence quantum yield, i.e. large emission? (k) What are the main concepts for overcoming the so-called Shockley-Queisser limit?

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
4.
Zurück zum Zitat Würfel, P.: Physics of Solar Cells: From Basic Principles to Advanced Concepts. Wiley-VCH, Weinheim (2009) Würfel, P.: Physics of Solar Cells: From Basic Principles to Advanced Concepts. Wiley-VCH, Weinheim (2009)
5.
Zurück zum Zitat Würfel, P.: Thermodynamic limitations to solar energy conversion. Phys. E 14, 18–26 (2002)CrossRef Würfel, P.: Thermodynamic limitations to solar energy conversion. Phys. E 14, 18–26 (2002)CrossRef
6.
Zurück zum Zitat Badescu, V.: Maximum concentration ratio of direct solar radiation. Appl. Opt. 32, 2187–2189 (1993)CrossRef Badescu, V.: Maximum concentration ratio of direct solar radiation. Appl. Opt. 32, 2187–2189 (1993)CrossRef
7.
Zurück zum Zitat Sze, S.M.: Physics of Semiconductor Devices, 2nd edn. Wiley, New York (1981) Sze, S.M.: Physics of Semiconductor Devices, 2nd edn. Wiley, New York (1981)
8.
Zurück zum Zitat Kittel, C.: Introduction to Solid State Physics, 8th edn. Wiley, New York (2004) Kittel, C.: Introduction to Solid State Physics, 8th edn. Wiley, New York (2004)
9.
Zurück zum Zitat Jacoboni, C.: Theory of Electron Transport in Semiconductors : A Pathway from Elementary Physics to Nonequilibrium Green Functions. Springer, Berlin, Heidelberg (2010)CrossRef Jacoboni, C.: Theory of Electron Transport in Semiconductors : A Pathway from Elementary Physics to Nonequilibrium Green Functions. Springer, Berlin, Heidelberg (2010)CrossRef
10.
Zurück zum Zitat Würfel, P.: The chemical potential of radiation. J. Phys. C: Solid State Phys. 15, 3967–3985 (1982)CrossRef Würfel, P.: The chemical potential of radiation. J. Phys. C: Solid State Phys. 15, 3967–3985 (1982)CrossRef
11.
Zurück zum Zitat Tiedje, T., Yablonovitch, E.: Limiting efficiency of silicon solar cells. Electron Devices IEEE 31, 711–716 (1984) Tiedje, T., Yablonovitch, E.: Limiting efficiency of silicon solar cells. Electron Devices IEEE 31, 711–716 (1984)
12.
Zurück zum Zitat Shockley, W., Read, W.: Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952)CrossRef Shockley, W., Read, W.: Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952)CrossRef
13.
Zurück zum Zitat Bloch, F.: Uber die Quantenmechanik der Elekronen in Kristallgittern. Zeitschrift für Physik A 52, 555–600 (1929) Bloch, F.: Uber die Quantenmechanik der Elekronen in Kristallgittern. Zeitschrift für Physik A 52, 555–600 (1929)
14.
Zurück zum Zitat Leo, K., Bolivar, P.H., Bruggemann, F.: Observation of Bloch oscillations in a semiconductor superlattice. Solid State Commun. 84, 943–946 (1992)CrossRef Leo, K., Bolivar, P.H., Bruggemann, F.: Observation of Bloch oscillations in a semiconductor superlattice. Solid State Commun. 84, 943–946 (1992)CrossRef
15.
Zurück zum Zitat Hauser, J.R., Dunbar, P.M.: Performance limitations of silicon solar cells. IEEE Trans. Electron Devices 24, 305–321 (1977)CrossRef Hauser, J.R., Dunbar, P.M.: Performance limitations of silicon solar cells. IEEE Trans. Electron Devices 24, 305–321 (1977)CrossRef
16.
Zurück zum Zitat Fossum, J.G., Burgess, E.L.: High-efficiency p+-n-n+ back-surface-field silicon solar cells. Appl. Phys. Lett. 33, 238–240 (1978)CrossRef Fossum, J.G., Burgess, E.L.: High-efficiency p+-n-n+ back-surface-field silicon solar cells. Appl. Phys. Lett. 33, 238–240 (1978)CrossRef
17.
Zurück zum Zitat Kerr, M.J., Cueva, A., Patrick, P.: Limiting efficiency of crystalline silicon solar cells due to Coulomb-enhanced Auger recombination. Prog. Photovoltaics Res. Appl. 11, 97–104 (2003)CrossRef Kerr, M.J., Cueva, A., Patrick, P.: Limiting efficiency of crystalline silicon solar cells due to Coulomb-enhanced Auger recombination. Prog. Photovoltaics Res. Appl. 11, 97–104 (2003)CrossRef
18.
Zurück zum Zitat O’regan, B., Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)CrossRef O’regan, B., Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)CrossRef
19.
Zurück zum Zitat Grätzel, M.: Recent advances in sensitized mesoscopic solar cells. Acc. Chem. Res. 42, 1788–1798 (2009)CrossRef Grätzel, M.: Recent advances in sensitized mesoscopic solar cells. Acc. Chem. Res. 42, 1788–1798 (2009)CrossRef
20.
Zurück zum Zitat De Wolf, S., Descoeudres, A., Holman, Z. C., Ballif, C.: High-efficiency silicon heterojunction solar cells: a review. Green 2, 7–24 (2012) De Wolf, S., Descoeudres, A., Holman, Z. C., Ballif, C.: High-efficiency silicon heterojunction solar cells: a review. Green 2, 7–24 (2012)
21.
Zurück zum Zitat Descoeudres, A., Holman, Z.C., Barraud, L., Morel, S., De Wolf, S., Ballif, C.:>21 % efficient silicon heterojunction solar cells on n- and p-type wafers compared. IEEE Journal of Photovoltaics 3, 83–89 (2013)CrossRef Descoeudres, A., Holman, Z.C., Barraud, L., Morel, S., De Wolf, S., Ballif, C.:>21 % efficient silicon heterojunction solar cells on n- and p-type wafers compared. IEEE Journal of Photovoltaics 3, 83–89 (2013)CrossRef
22.
Zurück zum Zitat Maennig, B., Drechsel, J., Gebeyehu, D., Simon, P., Kozlowski, F., Werner, A., Li, F., Grundmann, S., Sonntag, S., Koch, M., Leo, K., Pfeiffer, M., Hoppe, H., Meissner, D., Sariciftci, N.S., Riedel, I., Dyakonov, V., Parisi, J.: Organic p-i-n solar cells. Appl. Phys. A 79, 1–14 (2004)CrossRef Maennig, B., Drechsel, J., Gebeyehu, D., Simon, P., Kozlowski, F., Werner, A., Li, F., Grundmann, S., Sonntag, S., Koch, M., Leo, K., Pfeiffer, M., Hoppe, H., Meissner, D., Sariciftci, N.S., Riedel, I., Dyakonov, V., Parisi, J.: Organic p-i-n solar cells. Appl. Phys. A 79, 1–14 (2004)CrossRef
23.
Zurück zum Zitat Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)CrossRef Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)CrossRef
24.
Zurück zum Zitat Henry, C.H.: Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. J. Appl. Phys. 51, 4494–4500 (1980)CrossRef Henry, C.H.: Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. J. Appl. Phys. 51, 4494–4500 (1980)CrossRef
25.
Zurück zum Zitat Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.: Solar cell efficiency tables (version 41). Prog. Photovoltaics Res. Appl. 21, 1–11 (2013) Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.: Solar cell efficiency tables (version 41). Prog. Photovoltaics Res. Appl. 21, 1–11 (2013)
26.
Zurück zum Zitat Yablonovitch, Eli: Statistical ray optics. J. Opt. Soc. Am. 72, 899 (1982)CrossRef Yablonovitch, Eli: Statistical ray optics. J. Opt. Soc. Am. 72, 899 (1982)CrossRef
27.
Zurück zum Zitat Miller, O.D., Yablonovitch, E., Kurtz, S.R.: Strong internal and external luminescence as solar cells approach the Shockley-Queisser limit. IEEE Journal of Photovoltaics 2(3), 303–311 (2012) Miller, O.D., Yablonovitch, E., Kurtz, S.R.: Strong internal and external luminescence as solar cells approach the Shockley-Queisser limit. IEEE Journal of Photovoltaics 2(3), 303–311 (2012)
28.
Zurück zum Zitat Tang, Z., Elfwing, A., Bergqvist, J., Tress, W., Inganäs, O.: Light trapping with dielectric scatterers in single- and tandem-junction organic solar cells. Adv. Energy Mater. 3, 1606–1613 (2013) Tang, Z., Elfwing, A., Bergqvist, J., Tress, W., Inganäs, O.: Light trapping with dielectric scatterers in single- and tandem-junction organic solar cells. Adv. Energy Mater. 3, 1606–1613 (2013)
29.
Zurück zum Zitat Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.: Solar cell efficiency tables (version 40). Prog. Photovoltaics Res. Appl. 20, 606–614 (2012) Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.: Solar cell efficiency tables (version 40). Prog. Photovoltaics Res. Appl. 20, 606–614 (2012)
30.
Zurück zum Zitat Green, M.A.: Third generation photovoltaics: ultra-high conversion efficiency at low cost. Prog. Photovoltaics Res. Appl. 9, 123–135 (2001)CrossRef Green, M.A.: Third generation photovoltaics: ultra-high conversion efficiency at low cost. Prog. Photovoltaics Res. Appl. 9, 123–135 (2001)CrossRef
31.
Zurück zum Zitat Lewis, N.S.: Toward cost-effective solar energy use. Science 315, 798–801 (2007)CrossRef Lewis, N.S.: Toward cost-effective solar energy use. Science 315, 798–801 (2007)CrossRef
32.
Zurück zum Zitat Service, R.F.: Solar energy. Can the upstarts top silicon? Science 319, 718–720 (2008) Service, R.F.: Solar energy. Can the upstarts top silicon? Science 319, 718–720 (2008)
33.
Zurück zum Zitat Vos, A.D.: Detailed balance limit of the efficiency of tandem solar cells. J. Phys. D: Appl. Phys. 13, 839–846 (1980)CrossRef Vos, A.D.: Detailed balance limit of the efficiency of tandem solar cells. J. Phys. D: Appl. Phys. 13, 839–846 (1980)CrossRef
34.
Zurück zum Zitat Tandem solar cell by Heliatek with an efficiency of 12.0 % on an area of 1.1 square centimeters, certified at SGS. Press release (2013) Tandem solar cell by Heliatek with an efficiency of 12.0 % on an area of 1.1 square centimeters, certified at SGS. Press release (2013)
35.
Zurück zum Zitat Fundamental (high-level) introduction on solar cell physics, which some sections of this chapter are based on: Würfel, P.: Physics of Solar Cells: From Basic Principles to Advanced Concepts. Wiley-VCH, Weinheim (2009) Fundamental (high-level) introduction on solar cell physics, which some sections of this chapter are based on: Würfel, P.: Physics of Solar Cells: From Basic Principles to Advanced Concepts. Wiley-VCH, Weinheim (2009)
36.
Zurück zum Zitat Clear textbook on solid state physics: Kittel, C.: Introduction to Solid State Physics, 8th edn. Wiley, New york (2004) Clear textbook on solid state physics: Kittel, C.: Introduction to Solid State Physics, 8th edn. Wiley, New york (2004)
37.
Zurück zum Zitat Good introductory textbook on physics of solar cells: Nelson, J.: The Physics of Solar Cells. World Scientific Pub Co, Singapore (2003) Good introductory textbook on physics of solar cells: Nelson, J.: The Physics of Solar Cells. World Scientific Pub Co, Singapore (2003)
Metadaten
Titel
Photovoltaic Energy Conversion
verfasst von
Wolfgang Tress
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/978-3-319-10097-5_2

Neuer Inhalt