Skip to main content

Derivation of Equations for Continuum Mechanics and Thermodynamics of Fluids

  • Living reference work entry
  • First Online:
Handbook of Mathematical Analysis in Mechanics of Viscous Fluids

Abstract

The chapter starts with overview of the derivation of the balance equations for mass, momentum, angular momentum, and total energy, which is followed by a detailed discussion of the concept of entropy and entropy production. While the balance laws are universal for any continuous medium, the particular behavior of the material of interest must be described by an extra set of material-specific equations. These equations relating, for example, the Cauchy stress tensor and the kinematical quantities are called the constitutive relations. The core part of the chapter is devoted to the presentation of a modern thermodynamically based phenomenological theory of constitutive relations. The key feature of the theory is that the constitutive relations stem from the choice of two scalar quantities, the internal energy and the entropy production. This is tantamount to the proposition that the material behavior is fully characterized by the way it stores the energy and produces the entropy. The general theory is documented by several examples of increasing complexity. It is shown how to derive the constitutive relations for compressible and incompressible viscous heat-conducting fluids (Navier–Stokes–Fourier fluid), Korteweg fluids, and compressible and incompressible heat-conducting viscoelastic fluids (Oldroyd-B and Maxwell fluid).

Dedicated to professor K. R. Rajagopal on the occasion of his 65th birthday.

The authors were supported by the project LL1202 in the program ERC-CZ funded by the Ministry of Education, Youth and Sports of the Czech Republic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. H.A. Barnes, J.F. Hutton, K. Walters, An Introduction to Rheology (Elsevier, Amsterdam, 1989)

    MATH  Google Scholar 

  2. C. Barus, Isotherms, isopiestics and isometrics relative to viscosity. Am. J. Sci. 45, 87–96 (1893)

    Article  Google Scholar 

  3. C.E. Bingham, Fluidity and Plasticity (McGraw–Hill, New York, 1922)

    Google Scholar 

  4. R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids. Kinetic Theory, vol. 2, 2nd edn. (Wiley, Brisbane/Toronto/New York, 1987)

    Google Scholar 

  5. H. Blatter, Velocity and stress-fields in grounded glaciers – a simple algorithm for including deviatoric stress gradients. J. Glaciol. 41(138), 333–344 (1995)

    Article  Google Scholar 

  6. P.W. Bridgman, The effect of pressure on the viscosity of forty-four pure liquids. Proc. Am. Acad. Art. Sci. 61(3/12), 57–99 (1926)

    Article  Google Scholar 

  7. P.W. Bridgman, The Physics of High Pressure (Macmillan, New York, 1931)

    Google Scholar 

  8. M. Bulíček, E. Feireisl, J. Málek, A Navier-Stokes-Fourier system for incompressible fluids with temperature dependent material coefficients. Nonlinear Anal. Real. World Appl. 10(2), 992–1015 (2009a). doi:10.1016/j.nonrwa.2007.11.018

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Bulíček, J. Málek, K.R. Rajagopal, Mathematical analysis of unsteady flows of fluids with pressure, shear-rate, and temperature dependent material moduli that slip at solid boundaries. SIAM J. Math. Anal. 41(2), 665–707 (2009b). doi:10.1137/07069540X

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Bulíček, P. Gwiazda, J. Málek, K.R. Rajagopal, A. Świerczewska-Gwiazda, On flows of fluids described by an implicit constitutive equation characterized by a maximal monotone graph, in Mathematical Aspects of Fluid Mechanics. London Mathematical Society Lecture Note Series, vol. 402 (Cambridge University Press, Cambridge, 2012), pp. 23–51

    Google Scholar 

  11. M. Bulíček, J. Málek, On unsteady internal fows of Bingham fluids subject to threshold slip, in Recent Developments of Mathematical Fluid Mechanics, ed. by H. Amann, Y. Giga, H. Okamoto, H. Kozono, M. Yamazaki (Birkhäuser, 2015), pp. 135–156.

    Google Scholar 

  12. M. Bulíček, P. Gwiazda, J. Málek, A. Świerczewska-Gwiazda, On steady flows of incompressible fluids with implicit power-law-like rheology. Adv. Calc. Var. 2(2), 109–136 (2009). doi:10.1515/ACV.2009.006

    MathSciNet  MATH  Google Scholar 

  13. M. Bulíček, P. Gwiazda, J. Málek, A. Świerczewska-Gwiazda, On unsteady flows of implicitly constituted incompressible fluids. SIAM J. Math. Anal. 44(4), 2756–2801 (2012). doi:10.1137/110830289

    Article  MathSciNet  MATH  Google Scholar 

  14. J.M. Burgers, Mechanical considerations – model systems – phenomenological theories of relaxation and viscosity (chap 1), in First Report on Viscosity and Plasticity (Nordemann Publishing, New York, 1939), pp. 5–67

    Google Scholar 

  15. H.B. Callen, Thermodynamics and an Introduction to Thermostatistics, revised edn. (Wiley, New York, 1985)

    MATH  Google Scholar 

  16. P.J. Carreau, Rheological equations from molecular network theories. J. Rheol. 16(1), 99–127 (1972). doi:10.1122/1.549276

    Google Scholar 

  17. R. Clausius, On the nature of the motion which we call heat. Philos. Mag. 14(91), 108–127 (1857). doi:10.1080/14786445708642360

    Google Scholar 

  18. R. Clausius, The Mechanical Theory of Heat (MacMillan, London, 1879)

    MATH  Google Scholar 

  19. B.D. Coleman, Thermodynamics of materials with memory. Arch. Ration. Mech. Anal. 17, 1–46 (1964). doi:10.1007/BF00283864

    MathSciNet  Google Scholar 

  20. B.D. Coleman, H. Markovitz, W. Noll, Viscometric Flows of Non-newtonian Fluids. Theory and Experiment (Springer, Berlin, 1966)

    Google Scholar 

  21. M.M. Cross, Rheology of non-newtonian fluids: a new flow equation for pseudoplastic systems. J. Colloid Sci. 20(5), 417–437 (1965). doi:10.1016/0095-8522(65)90022-X

    Article  Google Scholar 

  22. J.M. Dealy, On the definition of pressure in rheology. Rheol. Bull. 77(1), 10–14 (2008)

    Google Scholar 

  23. T. Divoux, M.A. Fardin, S. Manneville, S. Lerouge, Shear banding of complex fluids. Ann. Rev. Fluid Mech. 48(1), 81–103 (2016). doi:10.1146/annurev-fluid-122414-034416

    Article  MATH  Google Scholar 

  24. A.L. Dorfmann, R.W. Ogden, Nonlinear Theory of Electroelastic and Magnetoelastic Interactions (Springer, 2014). doi:10.1007/978-1-4614-9596-3

    Book  MATH  Google Scholar 

  25. G. Duvaut, J.L. Lions, Inequalities in Mechanics and Physics (Springer, Berlin, 1976; translated from the French by C. W. John, Grundlehren der Mathematischen Wissenschaften), p. 219

    Google Scholar 

  26. H. Eyring, Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4(4), 283–291 (1936). doi:10.1063/1.1749836

    Article  Google Scholar 

  27. E. Feireisl, Dynamics of Viscous Compressible Fluids. Oxford Lecture Series in Mathematics and its Applications, vol. 26 (Oxford University Press, Oxford, 2004)

    Google Scholar 

  28. E. Feireisl, J. Málek, On the Navier-Stokes equations with temperature-dependent transport coefficients. Differ. Equ. Nonlinear Mech. Art. ID 90,616, 14 (2006, electronic)

    Google Scholar 

  29. S. Frei, T. Richter, T. Wick, Eulerian techniques for fluid-structure interactions: part I – modeling and simulation, in Numerical Mathematics and Advanced Applications – ENUMATH 2013, ed. by A. Abdulle, S. Deparis, D. Kressner, F. Nobile, M. Picasso. Lecture Notes in Computational Science and Engineering, vol. 103 (Springer International Publishing, Cham, 2015), pp. 745–753. doi:10.1007/978-3-319-10705-9_74

    Google Scholar 

  30. S. Frei, T. Richter, T. Wick, Eulerian techniques for fluid-structure interactions: part II – applications, in Numerical Mathematics and Advanced Applications – ENUMATH 2013, ed. by A. Abdulle, S. Deparis, D. Kressner, F. Nobile, M. Picasso. Lecture Notes in Computational Science and Engineering, vol. 103 (Springer International Publishing, Cham, 2015), pp. 755–762. doi:10.1007/978-3-319-10705-9_75

    Google Scholar 

  31. H. Giesekus, A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. J. Non-Newton Fluid Mech. 11(1–2), 69–109 (1982). doi:10.1016/0377-0257(82)85016-7

    Article  MATH  Google Scholar 

  32. P. Glansdorff, I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley-Interscience, London, 1971)

    MATH  Google Scholar 

  33. J.W. Glen, The creep of polycrystalline ice. Proc. R. Soc. A-Math. Phys. Eng. Sci. 228(1175), 519–538 (1955). doi:10.1098/rspa.1955.0066

    Article  Google Scholar 

  34. S.R. de Groot, P. Mazur, Non-equilibrium Thermodynamics. Series in Physics (North-Holland, Amsterdam, 1962)

    Google Scholar 

  35. M.E. Gurtin, E. Fried, L. Anand, The Mechanics and Thermodynamics of Continua (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  36. S.G. Hatzikiriakos, Wall slip of molten polymers. Prog. Polym. Sci. 37(4), 624–643 (2012). doi:10.1016/j.progpolymsci.2011.09.004

    Article  Google Scholar 

  37. M. Heida, On the derivation of thermodynamically consistent boundary conditions for the Cahn–Hilliard–Navier–Stokes system. Int. J. Eng. Sci. 62(0), 126–156 (2013). doi:10.1016/j.ijengsci.2012.09.005

    Article  MathSciNet  Google Scholar 

  38. M. Heida, J. Málek, On compressible Korteweg fluid-like materials. Int. J. Eng. Sci. 48(11), 1313–1324 (2010). doi:10.1016/j.ijengsci.2010.06.031

    Article  MathSciNet  MATH  Google Scholar 

  39. W.H. Herschel, R. Bulkley, Konsistenzmessungen von Gummi-Benzollösungen. Colloid Polym. Sci. 39(4), 291–300 (1926). doi:10.1007/BF01432034

    Google Scholar 

  40. C. Horgan, J. Murphy, Constitutive models for almost incompressible isotropic elastic rubber-like materials. J. Elast. 87, 133–146 (2007). doi:10.1007/s10659-007-9100-x

    Article  MathSciNet  MATH  Google Scholar 

  41. C.O. Horgan, G. Saccomandi, Constitutive models for compressible nonlinearly elastic materials with limiting chain extensibility. J. Elast. 77(2), 123–138 (2004). doi:10.1007/s10659-005-4408-x

    Article  MathSciNet  MATH  Google Scholar 

  42. J. Hron, K.R. Rajagopal, K. Tůma, Flow of a Burgers fluid due to time varying loads on deforming boundaries. J. Non-Newton Fluid Mech. 210, 66–77 (2014). doi:10.1016/j.jnnfm.2014.05.005

    Article  Google Scholar 

  43. R.R. Huilgol, On the definition of pressure in rheology. Rheol. Bull. 78(2), 12–15 (2009)

    Google Scholar 

  44. J.D. Humphrey, K.R. Rajagopal, A constrained mixture model for growth and remodeling of soft tissues. Math. Models Methods Appl. Sci. 12(3), 407–430 (2002). doi:10.1142/S0218202502001714

    Article  MathSciNet  MATH  Google Scholar 

  45. A. Janečka, V. Průša, Perspectives on using implicit type constitutive relations in the modelling of the behaviour of non-newtonian fluids. AIP Conf. Proc. 1662, 020003 (2015). doi:10.1063/1.4918873

    Article  Google Scholar 

  46. J.P. Joule, On the existence of an equivalent relation between heat and the ordinary forms of mechanical power. Philos. Mag. Ser. 3 27(179), 205–207 (1845). doi:10.1080/14786444508645256

    Google Scholar 

  47. J.P. Joule, On the mechanical equivalent of heat. Philos. Trans. R. Soc. Lond. 140, 61–82 (1850)

    Article  Google Scholar 

  48. S.i. Karato, P. Wu, Rheology of the upper mantle: a synthesis. Science 260(5109), 771–778 (1993). doi:10.1126/science.260.5109.771

    Google Scholar 

  49. S. Karra, K.R. Rajagopal, Development of three dimensional constitutive theories based on lower dimensional experimental data. Appl. Mat. 54(2), 147–176 (2009a). doi:10.1007/s10492-009-0010-z

    Article  MathSciNet  MATH  Google Scholar 

  50. S. Karra, K.R. Rajagopal, A thermodynamic framework to develop rate-type models for fluids without instantaneous elasticity. Acta Mech. 205(1–4), 105–119 (2009b). doi:10.1007/s00707-009-0167-2

    Article  MATH  Google Scholar 

  51. D.J. Korteweg, Sur la forme que prennent les équations du mouvement des fluides si l’on tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l’hypothese d’une variation continue de la densité. Archives Néerlandaises des Sciences exactes et naturelles 6(1), 6 (1901)

    Google Scholar 

  52. R.G. Larson, Constitutive Equations for Polymer Melts and Solutions. Butterworths Series in Chemical Engineering (Butterworth-Heinemann, 1988). doi:10.1016/B978-0-409-90119-1.50001-4

    Google Scholar 

  53. C. Le Roux, K.R. Rajagopal, Shear flows of a new class of power-law fluids. Appl. Math. 58(2), 153–177 (2013). doi:10.1007/s10492-013-0008-4

    Article  MathSciNet  MATH  Google Scholar 

  54. J. Málek, K.R. Rajagopal, Mathematical issues concerning the Navier–Stokes equations and some of its generalizations, in Handbook of Differential Equations: Evolutionary Equations, ed. by C.M. Dafermos, E. Feireisl, vol. 2, chap 5 (Elsevier, Amsterdam, 2005), pp. 371–459

    Google Scholar 

  55. J. Málek, K.R. Rajagopal, On the modeling of inhomogeneous incompressible fluid-like bodies. Mech. Mater. 38(3), 233–242 (2006). doi:10.1016/j.mechmat.2005.05.020

    Article  Google Scholar 

  56. J. Málek, K.R. Rajagopal, Mathematical properties of the solutions to the equations governing the flow of fluids with pressure and shear rate dependent viscosities, in Handbook of Mathematical Fluid Dynamics, vol. 4, ed. by S. Friedlander, D. Serre (Elsevier, Amsterdam, 2007), pp. 407–444

    Chapter  Google Scholar 

  57. J. Málek, V. Průša, K.R. Rajagopal, Generalizations of the Navier–Stokes fluid from a new perspective. Int. J. Eng. Sci. 48(12), 1907–1924 (2010). doi:10.1016/j.ijengsci.2010.06.013

    Article  MathSciNet  MATH  Google Scholar 

  58. J. Málek, K.R. Rajagopal, K. Tůma, On a variant of the Maxwell and Oldroyd-B models within the context of a thermodynamic basis. Int. J. Non-Linear Mech. 76, 42–47 (2015a). doi:10.1016/j.ijnonlinmec.2015.03.009

    Article  Google Scholar 

  59. J. Málek, K.R. Rajagopal, K. Tůma, A thermodynamically compatible model for describing the response of asphalt binders. Int. J. Pavement Eng. 16(4), 297–314 (2015b). doi:10.1080/10298436.2014.942860

    Article  Google Scholar 

  60. A.Y. Malkin, A.I. Isayev, Rheology: Concepts, Methods and Applications, 2nd edn. (ChemTec Publishing, Toronto, 2012)

    Google Scholar 

  61. S. Matsuhisa, R.B. Bird, Analytical and numerical solutions for laminar flow of the non-Newtonian Ellis fluid. AIChE J. 11(4), 588–595 (1965). doi:10.1002/aic.690110407

    Article  Google Scholar 

  62. I. Müller, Thermodynamics. Interaction of Mechanics and Mathematics (Pitman Publishing Limited, London, 1985)

    Google Scholar 

  63. C.L.M.H. Navier, Mémoire sur les lois du mouvement des fluides. Mem. Acad. R. Sci. Paris 6, 389–416 (1823)

    Google Scholar 

  64. W. Noll, A mathematical theory of the mechanical behavior of continuous media. Arch. Ration. Mech. Anal. 2, 198–226 (1958). doi:10.1007/BF00277929

    Article  MathSciNet  MATH  Google Scholar 

  65. J.G. Oldroyd, On the formulation of rheological equations of state. Proc. R. Soc. A-Math. Phys. Eng. Sci. 200(1063), 523–541 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  66. P.D. Olmsted, Perspectives on shear banding in complex fluids. Rheol. Acta. 47(3), 283–300 (2008). doi:10.1007/s00397-008-0260-9

    Article  Google Scholar 

  67. W. Ostwald, Über die Geschwindigkeitsfunktion der Viskosität disperser Systeme. I. Colloid Polym. Sci. 36, 99–117 (1925). doi:10.1007/BF01431449

    Google Scholar 

  68. M. Pekař, I. Samohýl, The Thermodynamics of Linear Fluids and Fluid Mixtures (Springer, 2014). doi:10.1007/978-3-319-02514-8

    Google Scholar 

  69. T. Perlácová, V. Průša, Tensorial implicit constitutive relations in mechanics of incompressible non-Newtonian fluids. J. Non-Newton Fluid Mech. 216, 13–21 (2015). doi:10.1016/j.jnnfm.2014.12.006

    Article  MathSciNet  Google Scholar 

  70. E.C. Pettit, E.D. Waddington, Ice flow at low deviatoric stress. J. Glaciol. 49(166), 359–369 (2003). doi:10.3189/172756503781830584

    Article  Google Scholar 

  71. V. Průša, K.R. Rajagopal, On implicit constitutive relations for materials with fading memory. J. Non-Newton Fluid Mech. 181–182, 22–29 (2012). doi:10.1016/j.jnnfm.2012.06.004

    Google Scholar 

  72. V. Průša, K.R. Rajagopal, On models for viscoelastic materials that are mechanically incompressible and thermally compressible or expansible and their Oberbeck–Boussinesq type approximations. Math. Models Meth. Appl. Sci. 23(10), 1761–1794 (2013). doi:10.1142/S0218202513500516

    Article  MathSciNet  MATH  Google Scholar 

  73. K.R. Rajagopal, On implicit constitutive theories. Appl. Math. 48(4), 279–319 (2003). doi:10.1023/A:1026062615145

    Article  MathSciNet  MATH  Google Scholar 

  74. K.R. Rajagopal, On implicit constitutive theories for fluids. J. Fluid Mech. 550, 243–249 (2006). doi:10.1017/S0022112005008025

    Article  MathSciNet  MATH  Google Scholar 

  75. K.R. Rajagopal, On a hierarchy of approximate models for flows of incompressible fluids through porous solids. Math. Models Methods Appl. Sci. 17(2), 215–252 (2007). doi:10.1142/S0218202507001899

    Article  MathSciNet  MATH  Google Scholar 

  76. K.R. Rajagopal, Remarks on the notion of “pressure”. Int. J. Non-Linear Mech. 71(0), 165–172 (2015). doi:10.1016/j.ijnonlinmec.2014.11.031

    Article  Google Scholar 

  77. K.R. Rajagopal, A.R. Srinivasa, A thermodynamic frame work for rate type fluid models. J. Non-Newton Fluid Mech. 88(3), 207–227 (2000). doi:10.1016/S0377-0257(99)00023-3

    Article  MATH  Google Scholar 

  78. K.R. Rajagopal, A.R. Srinivasa, On thermomechanical restrictions of continua. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460(2042), 631–651 (2004). doi:10.1098/rspa.2002.1111

    Article  MathSciNet  MATH  Google Scholar 

  79. K.R. Rajagopal, A.R. Srinivasa, On the thermodynamics of fluids defined by implicit constitutive relations. Z. Angew. Math. Phys. 59(4), 715–729 (2008). doi:10.1007/s00033-007-7039-1

    Article  MathSciNet  MATH  Google Scholar 

  80. K.R. Rajagopal, A.R. Srinivasa, A Gibbs-potential-based formulation for obtaining the response functions for a class of viscoelastic materials. Proc. R. Soc. A-Math. Phys. Eng. Sci. 467(2125), 39–58 (2011). doi:10.1098/rspa.2010.0136

    Article  MathSciNet  MATH  Google Scholar 

  81. K.R. Rajagopal, L. Tao, Mechanics of Mixtures. Series on Advances in Mathematics for Applied Sciences, vol. 35 (World Scientific Publishing Co. Inc., River Edge, 1995)

    Google Scholar 

  82. F. Ree, T. Ree, H. Eyring, Relaxation theory of transport problems in condensed systems. Ind. Eng. Chem. 50(7), 1036–1040 (1958). doi:10.1021/ie50583a038

    Article  MATH  Google Scholar 

  83. R.S. Rivlin, J.L. Ericksen, Stress-deformation relations for isotropic materials. J. Ration. Mech. Anal. 4, 323–425 (1955)

    MathSciNet  MATH  Google Scholar 

  84. I. Samohýl, Thermodynamics of Irreversible Processes in Fluid Mixtures. Teubner-Texte zur Physik [Teubner Texts in Physics], vol. 12 (Teubner, Leipzig, 1987)

    Google Scholar 

  85. G.R. Seely, Non-newtonian viscosity of polybutadiene solutions. AIChE J. 10(1), 56–60 (1964). doi:10.1002/aic.690100120

    Article  Google Scholar 

  86. J. Serrin, On the stability of viscous fluid motions. Arch. Ration. Mech. Anal. 3, 1–13 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  87. M. Šilhavý, Cauchy’s stress theorem for stresses represented by measures. Contin. Mech. Thermodyn. 20(2), 75–96 (2008). doi:10.1007/s00161-008-0073-1

    Article  MathSciNet  MATH  Google Scholar 

  88. A.W. Sisko, The flow of lubricating greases. Ind. Eng. Chem. 50(12), 1789–1792 (1958). doi:10.1021/ie50588a042

    Article  Google Scholar 

  89. T.M. Squires, S.R. Quake, Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977–1026 (2005) doi:10.1103/RevModPhys.77.977

    Article  Google Scholar 

  90. R. Tanner, K. Walters, Rheology: An Historical Perspective. Rheology Series, vol. 7 (Elsevier, Amsterdam, 1998)

    Google Scholar 

  91. C. Truesdell, W. Noll, The non-linear field theories of mechanics, in Handbuch der Physik, ed. by S. Flüge, vol. III/3 (Springer, Berlin, 1965)

    Google Scholar 

  92. C. Truesdell, K.R. Rajagopal, An introduction to the Mechanics of Fluids. Modeling and Simulation in Science, Engineering and Technology (Birkhäuser Boston Inc., Boston, 2000)

    Google Scholar 

  93. C. Truesdell, R.A. Toupin, The classical field theories, in Handbuch der Physik, ed. by S. Flüge, vol III/1 (Springer, Berlin/Heidelberg/New York, 1960), pp. 226–793

    Google Scholar 

  94. A. de Waele, Viscometry and plastometry. J. Oil Colour Chem. Assoc. 6, 33–69 (1923)

    Google Scholar 

  95. A.S. Wineman, K.R. Rajagopal, Mechanical Response of Polymers – An Introduction (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  96. K. Yasuda, Investigation of the analogies between viscometric and linear viscoelastic properties of polystyrene fluids. PhD thesis, Department of Chemical Engineering, Massachusetts Institute of Technology (1979)

    Google Scholar 

  97. H. Ziegler, An Introduction to Thermomechanics (North-Holland, Amsterdam, 1971)

    MATH  Google Scholar 

  98. H. Ziegler, C. Wehrli, The derivation of constitutive relations from the free energy and the dissipation function. Adv. Appl. Mech. 25, 183–238 (1987). doi:10.1016/S0065-2156(08)70278-3

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Málek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Málek, J., Průša, V. (2016). Derivation of Equations for Continuum Mechanics and Thermodynamics of Fluids. In: Giga, Y., Novotny, A. (eds) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer, Cham. https://doi.org/10.1007/978-3-319-10151-4_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10151-4_1-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-10151-4

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics