Skip to main content

2016 | OriginalPaper | Buchkapitel

10. Ceramic-Polymer Composites for Biomedical Applications

verfasst von : Toshiki Miyazaki, Masakazu Kawashita, Chikara Ohtsuki

Erschienen in: Handbook of Bioceramics and Biocomposites

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Several kinds of ceramics exhibit direct bone bonding through formation of biologically active hydroxyapatite layer after implantation in bony defects. They are called bioactive ceramics and play an important role in clinical applications. However, there are still some drawbacks on clinical applications because conventional bioactive ceramics essentially have lower fracture toughness and higher Young’s modulus than natural bone. The bone takes an organic–inorganic composite where apatite nanocrystals are precipitated on collagen fibers. Therefore, problems on mechanical properties of the bioactive ceramics can be solved by designed composites composed of constituents driving bone-bonding capability. In this chapter, current research topics on development of the various organic–inorganic composites designed for biomedical application have been reviewed. Mechanical mixing of bioactive fillers in organic polymer matrix is a typical processing for fabrication of bioactive composites. In addition, coating in aqueous conditions is an important process for fabricating bioactive composites since their surface property and interaction with surrounding body fluid and tissues govern the biological activity of the materials. Functions of drug delivery, diagnosis, and treatment of cancer can be provided through material design based on organic–inorganic composites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hench LL, Wilson J (1993) Introduction. In: Hench LL, Wilson J (eds) An introduction to bioceramics. World Scientific, Singapore, pp 1–24CrossRef Hench LL, Wilson J (1993) Introduction. In: Hench LL, Wilson J (eds) An introduction to bioceramics. World Scientific, Singapore, pp 1–24CrossRef
2.
Zurück zum Zitat Hench LL, Splinger RJ, Allen WC, Greenlee TK (1972) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res Symp 2:117–141. doi:10.1002/jbm.820050611 Hench LL, Splinger RJ, Allen WC, Greenlee TK (1972) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res Symp 2:117–141. doi:10.1002/jbm.820050611
3.
Zurück zum Zitat Hench LL (1991) Bioceramics; from concept to clinic. J Am Ceram Soc 74:1487–1510. doi:10.1111/j.1151-2916.1991.tb07132.xCrossRef Hench LL (1991) Bioceramics; from concept to clinic. J Am Ceram Soc 74:1487–1510. doi:10.1111/j.1151-2916.1991.tb07132.xCrossRef
4.
Zurück zum Zitat Jarcho M, Bolen CH, Thomas MB, Bobick J, Kay JF, Doremus RH (1976) Hydroxyapatite synthesis and characterization in dense polycrystalline forms. J Mater Sci 11:2027–2035. doi:10.1007/BF02403350CrossRef Jarcho M, Bolen CH, Thomas MB, Bobick J, Kay JF, Doremus RH (1976) Hydroxyapatite synthesis and characterization in dense polycrystalline forms. J Mater Sci 11:2027–2035. doi:10.1007/BF02403350CrossRef
5.
Zurück zum Zitat Kokubo T, Kim HM, Kawashita M (2003) Novel bioactive materials with different mechanical properties. Biomaterials 24:2161–2175. doi:10.1016/S0142-9612(03)00044-9CrossRef Kokubo T, Kim HM, Kawashita M (2003) Novel bioactive materials with different mechanical properties. Biomaterials 24:2161–2175. doi:10.1016/S0142-9612(03)00044-9CrossRef
6.
Zurück zum Zitat Park JB, Lakes RS (1992) Biomaterials, an introduction, 2nd edn. Plenum Press, New YorkCrossRef Park JB, Lakes RS (1992) Biomaterials, an introduction, 2nd edn. Plenum Press, New YorkCrossRef
7.
Zurück zum Zitat Neo M, Kotani S, Fujita Y, Nakamura T, Yamamuro T, Bando Y, Ohtsuki C, Kokubo T (1992) Differences in ceramic-bone interface between surface-active ceramics and resorbable ceramics: a study by scanning and transmission electron microscopy. J Biomed Mater Res 26:255–267. doi:10.1002/jbm.820260210CrossRef Neo M, Kotani S, Fujita Y, Nakamura T, Yamamuro T, Bando Y, Ohtsuki C, Kokubo T (1992) Differences in ceramic-bone interface between surface-active ceramics and resorbable ceramics: a study by scanning and transmission electron microscopy. J Biomed Mater Res 26:255–267. doi:10.1002/jbm.820260210CrossRef
8.
Zurück zum Zitat Cho SB, Nakanishi K, Kokubo T, Soga N, Ohtsuki C, Nakamura T, Kitsugi T, Yamamuro T (1995) Dependence of apatite formation on silica gel on its structure: effect of heat treatment. J Am Ceram Soc 78:1769–1774. doi:10.1111/j.1151-2916.1995.tb08887.xCrossRef Cho SB, Nakanishi K, Kokubo T, Soga N, Ohtsuki C, Nakamura T, Kitsugi T, Yamamuro T (1995) Dependence of apatite formation on silica gel on its structure: effect of heat treatment. J Am Ceram Soc 78:1769–1774. doi:10.1111/j.1151-2916.1995.tb08887.xCrossRef
9.
Zurück zum Zitat Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915. doi:10.1016/j.biomaterials.2006.01.017CrossRef Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915. doi:10.1016/j.biomaterials.2006.01.017CrossRef
10.
Zurück zum Zitat Oyane A, Kim HM, Furuya T, Kokubo T, Miyazaki T, Nakamura T (2003) Preparation and assessment of revised simulated body fluid. J Biomed Mater Res 65A:188–195. doi:10.1002/jbm.a.10482CrossRef Oyane A, Kim HM, Furuya T, Kokubo T, Miyazaki T, Nakamura T (2003) Preparation and assessment of revised simulated body fluid. J Biomed Mater Res 65A:188–195. doi:10.1002/jbm.a.10482CrossRef
11.
Zurück zum Zitat Li P, Ohtsuki C, Kokubo T, Nakanishi K, Soga N, de Groot K (1994) The role of hydrated silica, titania and alumina in inducing apatite on implants. J Biomed Mater Res 28:7–15. doi:10.1002/jbm.820280103CrossRef Li P, Ohtsuki C, Kokubo T, Nakanishi K, Soga N, de Groot K (1994) The role of hydrated silica, titania and alumina in inducing apatite on implants. J Biomed Mater Res 28:7–15. doi:10.1002/jbm.820280103CrossRef
12.
Zurück zum Zitat Uchida M, Kim HM, Kokubo T, Fujibayashi S, Nakamura T (2003) Structural dependence of apatite formation on titania gels in a simulated body fluid. J Biomed Mater Res A 64:164–170. doi:10.1002/jbm.a.10414CrossRef Uchida M, Kim HM, Kokubo T, Fujibayashi S, Nakamura T (2003) Structural dependence of apatite formation on titania gels in a simulated body fluid. J Biomed Mater Res A 64:164–170. doi:10.1002/jbm.a.10414CrossRef
13.
Zurück zum Zitat Uchida M, Kim HM, Kokubo T, Miyaji F, Nakamura T (2001) Bonelike apatite formation induced on zirconia gel in a simulated body fluid and its modified solutions. J Am Ceram Soc 84:2041–2044. doi:10.1111/j.1151-2916.2001.tb00955.xCrossRef Uchida M, Kim HM, Kokubo T, Miyaji F, Nakamura T (2001) Bonelike apatite formation induced on zirconia gel in a simulated body fluid and its modified solutions. J Am Ceram Soc 84:2041–2044. doi:10.1111/j.1151-2916.2001.tb00955.xCrossRef
14.
Zurück zum Zitat Miyazaki T, Kim HM, Miyaji F, Kokubo T, Nakamura T (2000) Bioactive tantalum metal prepared by NaOH treatment. J Biomed Mater Res 50:35–42. doi:10.1002/(SICI)1097-4636(200004)50:1<35::AID-JBM6>3.0.CO;2-8CrossRef Miyazaki T, Kim HM, Miyaji F, Kokubo T, Nakamura T (2000) Bioactive tantalum metal prepared by NaOH treatment. J Biomed Mater Res 50:35–42. doi:10.1002/(SICI)1097-4636(200004)50:1<35::AID-JBM6>3.0.CO;2-8CrossRef
15.
Zurück zum Zitat Miyazaki T, Kim HM, Kokubo T, Kato H, Nakamura T (2001) Induction and acceleration of bonelike apatite formation on tantalum oxide gel in simulated body fluid. J Sol-Gel Sci Technol 21:83–88. doi:10.1023/A:1011265701447CrossRef Miyazaki T, Kim HM, Kokubo T, Kato H, Nakamura T (2001) Induction and acceleration of bonelike apatite formation on tantalum oxide gel in simulated body fluid. J Sol-Gel Sci Technol 21:83–88. doi:10.1023/A:1011265701447CrossRef
16.
Zurück zum Zitat Miyazaki T, Kim HM, Kokubo T, Ohtsuki C, Nakamura T (2001) Bonelike apatite formation induced on niobium oxide gels in simulated body fluid. J Ceram Soc Jpn 109:934–938. doi:10.2109/jcersj.109.1275_929CrossRef Miyazaki T, Kim HM, Kokubo T, Ohtsuki C, Nakamura T (2001) Bonelike apatite formation induced on niobium oxide gels in simulated body fluid. J Ceram Soc Jpn 109:934–938. doi:10.2109/jcersj.109.1275_929CrossRef
17.
Zurück zum Zitat Tanahashi M, Matsuda T (1997) Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid. J Biomed Mater Res 34:305–315. doi:10.1002/(SICI)1097-4636(19970305)34:33.0.CO;2-OCrossRef Tanahashi M, Matsuda T (1997) Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid. J Biomed Mater Res 34:305–315. doi:10.1002/(SICI)1097-4636(19970305)34:33.0.CO;2-OCrossRef
18.
Zurück zum Zitat Kawai T, Ohtsuki C, Kamitakahara M, Miyazaki T, Tanihara M, Sakaguchi Y, Konagaya S (2004) Coating of apatite layer on polyamide films containing sulfonic groups by biomimetic process. Biomaterials 25:4529–4534. doi:10.1016/j.biomaterials.2003.11.039CrossRef Kawai T, Ohtsuki C, Kamitakahara M, Miyazaki T, Tanihara M, Sakaguchi Y, Konagaya S (2004) Coating of apatite layer on polyamide films containing sulfonic groups by biomimetic process. Biomaterials 25:4529–4534. doi:10.1016/j.biomaterials.2003.11.039CrossRef
19.
Zurück zum Zitat Miyazaki T, Imamura M, Ishida E, Ashizuka M, Ohtsuki C (2009) Apatite formation abilities and mechanical properties of hydroxyethylmethacrylate-based organic-inorganic hybrids incorporated with sulfonic groups and calcium ions. J Mater Sci Mater Med 20:157–161. doi:10.1007/s10856-008-3556-5CrossRef Miyazaki T, Imamura M, Ishida E, Ashizuka M, Ohtsuki C (2009) Apatite formation abilities and mechanical properties of hydroxyethylmethacrylate-based organic-inorganic hybrids incorporated with sulfonic groups and calcium ions. J Mater Sci Mater Med 20:157–161. doi:10.1007/s10856-008-3556-5CrossRef
20.
Zurück zum Zitat Ohtsuki C, Kokubo T, Yamamuro T (1992) Mechanism of apatite formation on CaO-SiO2-P2O5 glasses in a simulated body fluid. J Non-Cryst Solids 143:84–92. doi:10.1016/S0022-3093(05)80556-3CrossRef Ohtsuki C, Kokubo T, Yamamuro T (1992) Mechanism of apatite formation on CaO-SiO2-P2O5 glasses in a simulated body fluid. J Non-Cryst Solids 143:84–92. doi:10.1016/S0022-3093(05)80556-3CrossRef
21.
Zurück zum Zitat Sugino A, Tsuru K, Hayakawa S, Kikuta K, Kawachi G, Osaka A, Ohtsuki C (2009) Induced deposition of bone-like hydroxyapatite on thermally oxidized titanium substrates using a spatial gap in a solution that mimics a body fluid. J Ceram Soc Jpn 117:515–520. doi:10.2109/jcersj2.117.515CrossRef Sugino A, Tsuru K, Hayakawa S, Kikuta K, Kawachi G, Osaka A, Ohtsuki C (2009) Induced deposition of bone-like hydroxyapatite on thermally oxidized titanium substrates using a spatial gap in a solution that mimics a body fluid. J Ceram Soc Jpn 117:515–520. doi:10.2109/jcersj2.117.515CrossRef
22.
Zurück zum Zitat Shikinami Y, Okuno M (1999) Bioresorbable devices made of forged composites of hydroxyapatite and poly l-lactide (PLLA): part I. basic characteristics. Biomaterials 20:859–877. doi:10.1016/S0142-9612(98)00241-5CrossRef Shikinami Y, Okuno M (1999) Bioresorbable devices made of forged composites of hydroxyapatite and poly l-lactide (PLLA): part I. basic characteristics. Biomaterials 20:859–877. doi:10.1016/S0142-9612(98)00241-5CrossRef
23.
Zurück zum Zitat Bonfield W (1993) Design of bioactive ceramic-polymer composites. In: Hench LL, Wilson J (eds) An introduction to bioceramics. World Scientific, Singapore, pp 299–303CrossRef Bonfield W (1993) Design of bioactive ceramic-polymer composites. In: Hench LL, Wilson J (eds) An introduction to bioceramics. World Scientific, Singapore, pp 299–303CrossRef
24.
Zurück zum Zitat Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J (2001) Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 22:1705–1711. doi:10.1016/S0142-9612(00)00305-7CrossRef Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J (2001) Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 22:1705–1711. doi:10.1016/S0142-9612(00)00305-7CrossRef
25.
Zurück zum Zitat Kawai T, Matsui K, Iibuchi S, Anada T, Honda Y, Sasaki K, Kamakura S, Suzuki O, Echigo S (2011) Reconstruction of critical-sized bone defect in dog skull by octacalcium phosphate combined with collagen. Clin Oral Implants Res 13:112–123. doi:10.1111/j.1708-8208.2009.00192.x Kawai T, Matsui K, Iibuchi S, Anada T, Honda Y, Sasaki K, Kamakura S, Suzuki O, Echigo S (2011) Reconstruction of critical-sized bone defect in dog skull by octacalcium phosphate combined with collagen. Clin Oral Implants Res 13:112–123. doi:10.1111/j.1708-8208.2009.00192.x
26.
Zurück zum Zitat Muramatsu K, Oba K, Mukai D, Hasegawa K, Masuda S, Yoshihara Y (2007) Subacute systemic toxicity assessment of β-tricalcium phosphate/carboxymethyl-chitin composite implanted in rat femur. J Mater Sci Mater Med 18:513–522. doi:10.1007/s10856-007-2012-2CrossRef Muramatsu K, Oba K, Mukai D, Hasegawa K, Masuda S, Yoshihara Y (2007) Subacute systemic toxicity assessment of β-tricalcium phosphate/carboxymethyl-chitin composite implanted in rat femur. J Mater Sci Mater Med 18:513–522. doi:10.1007/s10856-007-2012-2CrossRef
27.
Zurück zum Zitat Yoshida A, Miyazaki T, Ishida E, Ashizuka M (2006) Bioactivity and mechanical properties of cellulose/carbonate hydroxyapatite composites prepared in situ through mechanochemical reaction. J Biomater Appl 21:179–194. doi:10.1177/0885328206059796CrossRef Yoshida A, Miyazaki T, Ishida E, Ashizuka M (2006) Bioactivity and mechanical properties of cellulose/carbonate hydroxyapatite composites prepared in situ through mechanochemical reaction. J Biomater Appl 21:179–194. doi:10.1177/0885328206059796CrossRef
28.
Zurück zum Zitat Ma R, Tang T (2014) Current strategies to improve the bioactivity of PEEK. Int J Mol Sci 15:5426–5445. doi:10.3390/ijms15045426CrossRef Ma R, Tang T (2014) Current strategies to improve the bioactivity of PEEK. Int J Mol Sci 15:5426–5445. doi:10.3390/ijms15045426CrossRef
29.
Zurück zum Zitat Kim IY, Sugino A, Kikuta K, Ohtsuki C, Cho SB (2009) Bioactive composites consisting of PEEK and calcium silicate powders. J Biomater Appl 24:105–118. doi:10.1177/0885328208094557CrossRef Kim IY, Sugino A, Kikuta K, Ohtsuki C, Cho SB (2009) Bioactive composites consisting of PEEK and calcium silicate powders. J Biomater Appl 24:105–118. doi:10.1177/0885328208094557CrossRef
30.
Zurück zum Zitat Nakahara I, Takao M, Goto T, Ohtsuki C, Hibino S, Sugano N (2012) Interfacial shear strength of bioactive-coated carbon fiber reinforced polyetheretherketone after in vivo implantation. J Orthop Res 30:1618–1625. doi:10.1002/jor.22115CrossRef Nakahara I, Takao M, Goto T, Ohtsuki C, Hibino S, Sugano N (2012) Interfacial shear strength of bioactive-coated carbon fiber reinforced polyetheretherketone after in vivo implantation. J Orthop Res 30:1618–1625. doi:10.1002/jor.22115CrossRef
31.
Zurück zum Zitat Ishikawa K, Miyamoto Y, Kon M, Nagayama M, Asaoka K (1995) Non-decay type fast-setting calcium phosphate cement: composite with sodium alginate. Biomaterials 16:527–532. doi:10.1016/0142-9612(95)91125-ICrossRef Ishikawa K, Miyamoto Y, Kon M, Nagayama M, Asaoka K (1995) Non-decay type fast-setting calcium phosphate cement: composite with sodium alginate. Biomaterials 16:527–532. doi:10.1016/0142-9612(95)91125-ICrossRef
32.
Zurück zum Zitat Makinen TJ, Veiranto M, Lankinen P, Moritz N, Jalava J, Tormala P, Aro HT (2005) In vitro and in vivo release of ciprofloxacin from osteoconductive bone defect filler. J Antimicrob Chemother 56:1063–1068. doi:10.1093/jac/dki366CrossRef Makinen TJ, Veiranto M, Lankinen P, Moritz N, Jalava J, Tormala P, Aro HT (2005) In vitro and in vivo release of ciprofloxacin from osteoconductive bone defect filler. J Antimicrob Chemother 56:1063–1068. doi:10.1093/jac/dki366CrossRef
33.
Zurück zum Zitat Schnieders J, Gbureck U, Thull R, Kissel T (2006) Controlled release of gentamicin from calcium phosphate-poly(lactic acid-co-glycolic acid) composite bone cement. Biomaterials 27:4239–4249. doi:10.1016/j.biomaterials.2006.03.032CrossRef Schnieders J, Gbureck U, Thull R, Kissel T (2006) Controlled release of gentamicin from calcium phosphate-poly(lactic acid-co-glycolic acid) composite bone cement. Biomaterials 27:4239–4249. doi:10.1016/j.biomaterials.2006.03.032CrossRef
34.
Zurück zum Zitat Otsuka M, Nakagawa H, Ito A, Higuchi WI (2010) Effect of geometrical structure on drug release rate of a three-dimensionally perforated porous apatite/collagen composite cement. J Pharm Sci 99:286–292. doi:10.1002/jps.21835CrossRef Otsuka M, Nakagawa H, Ito A, Higuchi WI (2010) Effect of geometrical structure on drug release rate of a three-dimensionally perforated porous apatite/collagen composite cement. J Pharm Sci 99:286–292. doi:10.1002/jps.21835CrossRef
35.
Zurück zum Zitat Lee YM, Park YJ, Lee SJ, Ku Y, Han SB, Klokkevold PR, Chung CP (2000) The bone regenerative effect of platelet-derived growth factor-BB delivered with a chitosan/tricalcium phosphate sponge carrier. J Periodontol 71:418–424. doi:10.1902/jop.2000.71.3.418CrossRef Lee YM, Park YJ, Lee SJ, Ku Y, Han SB, Klokkevold PR, Chung CP (2000) The bone regenerative effect of platelet-derived growth factor-BB delivered with a chitosan/tricalcium phosphate sponge carrier. J Periodontol 71:418–424. doi:10.1902/jop.2000.71.3.418CrossRef
36.
Zurück zum Zitat Zhang Y, Zhang M (2002) Calcium phosphate/chitosan composite scaffolds for controlled in vitro antibiotic drug release. J Biomed Mater Res 62:378–386. doi:10.1002/jbm.10312CrossRef Zhang Y, Zhang M (2002) Calcium phosphate/chitosan composite scaffolds for controlled in vitro antibiotic drug release. J Biomed Mater Res 62:378–386. doi:10.1002/jbm.10312CrossRef
37.
Zurück zum Zitat Takahashi Y, Yamamoto M, Tabata Y (2005) Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and β-tricalcium phosphate. Biomaterials 26:4856–4865. doi:10.1016/j.biomaterials.2005.01.012CrossRef Takahashi Y, Yamamoto M, Tabata Y (2005) Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and β-tricalcium phosphate. Biomaterials 26:4856–4865. doi:10.1016/j.biomaterials.2005.01.012CrossRef
38.
Zurück zum Zitat Leeuwenburgh S, Jo J, Wang H, Yamamoto M, Jansen JA, Tabata Y (2010) Mineralization, biodegradation, and drug release behavior of gelatin/apatite composite microspheres for bone regeneration. Biomacromolecules 11:2653–2659. doi:10.1021/bm1006344CrossRef Leeuwenburgh S, Jo J, Wang H, Yamamoto M, Jansen JA, Tabata Y (2010) Mineralization, biodegradation, and drug release behavior of gelatin/apatite composite microspheres for bone regeneration. Biomacromolecules 11:2653–2659. doi:10.1021/bm1006344CrossRef
39.
Zurück zum Zitat Liu X, Okada M, Maeda H, Fujii S, Furuzono T (2011) Hydroxyapatite/biodegradable poly-(l-lactide-co-caprolactone) composite microparticles as injectable scaffold by a Pickering emulsion route. Acta Biomater 7:821–828. doi:10.1016/j.actbio.2010.08.023CrossRef Liu X, Okada M, Maeda H, Fujii S, Furuzono T (2011) Hydroxyapatite/biodegradable poly-(l-lactide-co-caprolactone) composite microparticles as injectable scaffold by a Pickering emulsion route. Acta Biomater 7:821–828. doi:10.1016/j.actbio.2010.08.023CrossRef
40.
Zurück zum Zitat Mima Y, Fukumoto S, Koyama H, Okada M, Tanaka S, Shoji T, Emoto M, Furuzono T, Nishizawa Y, Inaba M (2012) Enhancement of cell-based therapeutic angiogenesis using a novel type of injectable scaffolds of hydroxyapatite-polymer nanocomposite microspheres. PLoS One 7:e35199. doi:10.1371/journal.pone.0035199CrossRef Mima Y, Fukumoto S, Koyama H, Okada M, Tanaka S, Shoji T, Emoto M, Furuzono T, Nishizawa Y, Inaba M (2012) Enhancement of cell-based therapeutic angiogenesis using a novel type of injectable scaffolds of hydroxyapatite-polymer nanocomposite microspheres. PLoS One 7:e35199. doi:10.1371/journal.pone.0035199CrossRef
42.
Zurück zum Zitat Dalby MJ, Di Silvio L, Harper EJ, Bonfield W (1999) In vitro evaluation of a new polymethylmethacrylate cement reinforced with hydroxyapatite. J Mater Sci Mater Med 10:793–796. doi:10.1023/A:1008907218330CrossRef Dalby MJ, Di Silvio L, Harper EJ, Bonfield W (1999) In vitro evaluation of a new polymethylmethacrylate cement reinforced with hydroxyapatite. J Mater Sci Mater Med 10:793–796. doi:10.1023/A:1008907218330CrossRef
43.
Zurück zum Zitat Shinzato S, Kobayashi M, Mousa WF, Kamimura M, Neo M, Kitamura Y, Kokubo T, Nakamura T (2000) Bioactive polymethyl methacrylate-based bone cement: comparison of glass beads, apatite- and wollastonite-containing glass-ceramic, and hydroxyapatite fillers on mechanical and biological properties. J Biomed Mater Res 51:258–272. doi:10.1002/(SICI)1097-4636(200008)51:2<258::AID-JBM15>3.0.CO;2-SCrossRef Shinzato S, Kobayashi M, Mousa WF, Kamimura M, Neo M, Kitamura Y, Kokubo T, Nakamura T (2000) Bioactive polymethyl methacrylate-based bone cement: comparison of glass beads, apatite- and wollastonite-containing glass-ceramic, and hydroxyapatite fillers on mechanical and biological properties. J Biomed Mater Res 51:258–272. doi:10.1002/(SICI)1097-4636(200008)51:2<258::AID-JBM15>3.0.CO;2-SCrossRef
44.
Zurück zum Zitat Goto K, Tamura J, Shinzato S, Fujibayashi S, Hashimoto M, Kawashita M, Kokubo T, Nakamura T (2005) Bioactive bone cements containing nano-sized titania particles for use as bone substitutes. Biomaterials 26:6496–6505. doi:10.1016/j.biomaterials.2005.04.044CrossRef Goto K, Tamura J, Shinzato S, Fujibayashi S, Hashimoto M, Kawashita M, Kokubo T, Nakamura T (2005) Bioactive bone cements containing nano-sized titania particles for use as bone substitutes. Biomaterials 26:6496–6505. doi:10.1016/j.biomaterials.2005.04.044CrossRef
45.
Zurück zum Zitat Miyazaki T, Ohtsuki C, Kyomoto M, Tanihara M, Mori A, Kuramoto K (2003) Bioactive PMMA bone cement prepared by modification with methacryloxypropyltrimethoxysilane and calcium chloride. J Biomed Mater Res 67A:1417–1423. doi:10.1002/jbm.a.20042CrossRef Miyazaki T, Ohtsuki C, Kyomoto M, Tanihara M, Mori A, Kuramoto K (2003) Bioactive PMMA bone cement prepared by modification with methacryloxypropyltrimethoxysilane and calcium chloride. J Biomed Mater Res 67A:1417–1423. doi:10.1002/jbm.a.20042CrossRef
46.
Zurück zum Zitat Sugino A, Ohtsuki C, Miyazaki T (2008) In vivo response of bioactive PMMA-based bone cement modified with alkoxysilane and calcium acetate. J Biomater Appl 23:213–228. doi:10.1177/0885328207081694CrossRef Sugino A, Ohtsuki C, Miyazaki T (2008) In vivo response of bioactive PMMA-based bone cement modified with alkoxysilane and calcium acetate. J Biomater Appl 23:213–228. doi:10.1177/0885328207081694CrossRef
47.
Zurück zum Zitat Kasuga T, Maeda H, Kato K, Nogami M, Hata K, Ueda M (2003) Preparation of poly(lactic acid) composites containing calcium carbonate (vaterite). Biomaterials 24:3247–3253. doi:10.1016/S0142-9612(03)00190-XCrossRef Kasuga T, Maeda H, Kato K, Nogami M, Hata K, Ueda M (2003) Preparation of poly(lactic acid) composites containing calcium carbonate (vaterite). Biomaterials 24:3247–3253. doi:10.1016/S0142-9612(03)00190-XCrossRef
48.
Zurück zum Zitat Obata A, Hotta T, Wakita T, Ota Y, Kasuga T (2010) Electrospun microfiber meshes of silicon-doped vaterite/poly(lactic acid) hybrid for guided bone regeneration. Acta Biomater 6:1248–1257. doi:10.1016/j.actbio.2009.11.013CrossRef Obata A, Hotta T, Wakita T, Ota Y, Kasuga T (2010) Electrospun microfiber meshes of silicon-doped vaterite/poly(lactic acid) hybrid for guided bone regeneration. Acta Biomater 6:1248–1257. doi:10.1016/j.actbio.2009.11.013CrossRef
49.
Zurück zum Zitat Ozawa N, Yao T (2002) Micropattern formation of apatite by combination of a biomimetic process and transcription of resist pattern. J Biomed Mater Res 62:579–586. doi:10.1002/jbm.10281CrossRef Ozawa N, Yao T (2002) Micropattern formation of apatite by combination of a biomimetic process and transcription of resist pattern. J Biomed Mater Res 62:579–586. doi:10.1002/jbm.10281CrossRef
50.
Zurück zum Zitat Hata K, Kokubo T, Nakamura T, Yamamuro T (1995) Growth of bonelike apatite layer on a substrate by a biomimetic process. J Am Ceram Soc 78:1049–1053. doi:10.1111/j.1151-2916.1995.tb08435.xCrossRef Hata K, Kokubo T, Nakamura T, Yamamuro T (1995) Growth of bonelike apatite layer on a substrate by a biomimetic process. J Am Ceram Soc 78:1049–1053. doi:10.1111/j.1151-2916.1995.tb08435.xCrossRef
51.
Zurück zum Zitat Habibovic P, Barrere F, van Blitterswijk CA, de Groot K, Layrolle P (2002) Biomimetic hydroxyapatite coating on metal implants. J Am Ceram Soc 517–522. doi:10.1111/j.1151-2916.2002.tb00126.x Habibovic P, Barrere F, van Blitterswijk CA, de Groot K, Layrolle P (2002) Biomimetic hydroxyapatite coating on metal implants. J Am Ceram Soc 517–522. doi:10.1111/j.1151-2916.2002.tb00126.x
52.
Zurück zum Zitat Kawashita M, Nakao M, Minoda M, Kim HM, Beppu T, Miyamoto T, Kokubo T, Nakamura T (2003) Apatite-forming ability of carboxyl group-containing polymer gels in a simulated body fluid. Biomaterials 24:2477–2484. doi:10.1016/S0142-9612(03)00050-4CrossRef Kawashita M, Nakao M, Minoda M, Kim HM, Beppu T, Miyamoto T, Kokubo T, Nakamura T (2003) Apatite-forming ability of carboxyl group-containing polymer gels in a simulated body fluid. Biomaterials 24:2477–2484. doi:10.1016/S0142-9612(03)00050-4CrossRef
53.
Zurück zum Zitat Miyazaki T, Ohtsuki C, Akioka Y, Tanihara M, Nakao J, Sakaguchi Y, Konagaya S (2003) Apatite deposition on polyamide films containing carboxyl group in a biomimetic solution. J Mater Sci Mater Med 569–574. doi:10.1023/A:1024000821368 Miyazaki T, Ohtsuki C, Akioka Y, Tanihara M, Nakao J, Sakaguchi Y, Konagaya S (2003) Apatite deposition on polyamide films containing carboxyl group in a biomimetic solution. J Mater Sci Mater Med 569–574. doi:10.1023/A:1024000821368
54.
Zurück zum Zitat Miyazaki T, Ishikawa K, Shirosaki Y, Ohtsuki C (2013) Organic-inorganic composites designed for biomedical applications. Biol Pharm Bull 36:1670–1675. doi:10.1248/bpb.b13-00424CrossRef Miyazaki T, Ishikawa K, Shirosaki Y, Ohtsuki C (2013) Organic-inorganic composites designed for biomedical applications. Biol Pharm Bull 36:1670–1675. doi:10.1248/bpb.b13-00424CrossRef
55.
Zurück zum Zitat Ichibouji T, Miyazaki T, Ishida E, Ashizuka M, Sugino A, Ohtsuki C, Kuramoto K (2008) Evaluation of apatite-forming ability and mechanical property of pectin hydrogels. J Ceram Soc Jpn 116:74–78. doi:10.2109/jcersj2.116.74CrossRef Ichibouji T, Miyazaki T, Ishida E, Ashizuka M, Sugino A, Ohtsuki C, Kuramoto K (2008) Evaluation of apatite-forming ability and mechanical property of pectin hydrogels. J Ceram Soc Jpn 116:74–78. doi:10.2109/jcersj2.116.74CrossRef
56.
Zurück zum Zitat Ichibouji T, Miyazaki T, Ishida E, Sugino A, Ohtsuki C (2009) Apatite mineralization abilities and mechanical properties of covalently cross-linked pectin hydrogels. Mater Sci Eng C 29:1765–1769. doi:10.1016/j.msec.2009.01.027CrossRef Ichibouji T, Miyazaki T, Ishida E, Sugino A, Ohtsuki C (2009) Apatite mineralization abilities and mechanical properties of covalently cross-linked pectin hydrogels. Mater Sci Eng C 29:1765–1769. doi:10.1016/j.msec.2009.01.027CrossRef
57.
Zurück zum Zitat Bonfield W (1996) Composite biomaterials. In: Kokubo T, Nakamura T, Miyaji F (eds) Bioceramics, vol 9. Elsevier, Oxford, pp 11–13 Bonfield W (1996) Composite biomaterials. In: Kokubo T, Nakamura T, Miyaji F (eds) Bioceramics, vol 9. Elsevier, Oxford, pp 11–13
58.
Zurück zum Zitat Chen Q, Miyata N, Kokubo T, Nakamura T (2000) Bioactivity and mechanical properties of PDMS-modified CaO–SiO2–TiO2 hybrids prepared by sol-gel process. J Biomed Mater Res 51:605–611. doi:10.1002/1097-4636(20000915)51:4<605::AID-JBM8>3.0.CO;2-UCrossRef Chen Q, Miyata N, Kokubo T, Nakamura T (2000) Bioactivity and mechanical properties of PDMS-modified CaO–SiO2–TiO2 hybrids prepared by sol-gel process. J Biomed Mater Res 51:605–611. doi:10.1002/1097-4636(20000915)51:4<605::AID-JBM8>3.0.CO;2-UCrossRef
59.
Zurück zum Zitat Miyazaki T, Yasunaga S, Ishida E, Ashizuka M, Ohtsuki C (2007) Effects of cross-linking agent on apatite-forming ability and mechanical property of organic-inorganic hybrids based on starch. Mater Trans 48:317–321. doi:10.2320/matertrans.48.317CrossRef Miyazaki T, Yasunaga S, Ishida E, Ashizuka M, Ohtsuki C (2007) Effects of cross-linking agent on apatite-forming ability and mechanical property of organic-inorganic hybrids based on starch. Mater Trans 48:317–321. doi:10.2320/matertrans.48.317CrossRef
60.
Zurück zum Zitat Kawashita M, Tanaka M, Kokubo T, Inoue Y, Yao T, Hamada S, Shinjo T (2005) Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer. Biomaterials 26:2231–2238. doi:10.1016/j.biomaterials.2004.07.014CrossRef Kawashita M, Tanaka M, Kokubo T, Inoue Y, Yao T, Hamada S, Shinjo T (2005) Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer. Biomaterials 26:2231–2238. doi:10.1016/j.biomaterials.2004.07.014CrossRef
61.
Zurück zum Zitat Zhao J, Sekikawa H, Kawai T, Unuma H (2009) Ferrimagnetic magnetite hollow microspheres prepared via enzimatically precipitated iron hydroxide on a urease-bearing polymer template. J Ceram Soc Jpn 117:344–346. doi:10.2109/jcersj2.117.344CrossRef Zhao J, Sekikawa H, Kawai T, Unuma H (2009) Ferrimagnetic magnetite hollow microspheres prepared via enzimatically precipitated iron hydroxide on a urease-bearing polymer template. J Ceram Soc Jpn 117:344–346. doi:10.2109/jcersj2.117.344CrossRef
62.
Zurück zum Zitat Miyazaki T, Miyaoka A, Ishida E, Li Z, Kawashita M, Hiraoka M (2012) Preparation of ferromagnetic microcapsules for hyperthermia using water/oil emulsion as a reaction field. Mater Sci Eng C 32:692–696. doi:10.1016/j.msec.2012.01.010CrossRef Miyazaki T, Miyaoka A, Ishida E, Li Z, Kawashita M, Hiraoka M (2012) Preparation of ferromagnetic microcapsules for hyperthermia using water/oil emulsion as a reaction field. Mater Sci Eng C 32:692–696. doi:10.1016/j.msec.2012.01.010CrossRef
63.
Zurück zum Zitat Mitsumori M, Hiraoka M, Shibata T, Okuno Y, Masunaga S, Koishi M, Okajima K, Nagata Y, Nishimura Y, Abe M, Ohura K, Hasegawa M, Nagae H, Ebisawa Y (1994) Development of intra-arterial hyperthermia using a dextran-magnetite complex. Int J Hyperth 10:785–793. doi:10.3109/02656739409012371CrossRef Mitsumori M, Hiraoka M, Shibata T, Okuno Y, Masunaga S, Koishi M, Okajima K, Nagata Y, Nishimura Y, Abe M, Ohura K, Hasegawa M, Nagae H, Ebisawa Y (1994) Development of intra-arterial hyperthermia using a dextran-magnetite complex. Int J Hyperth 10:785–793. doi:10.3109/02656739409012371CrossRef
64.
Zurück zum Zitat Minamimura T, Sato H, Kasaoka S, Saito T, Ishizawa S, Takemori S, Tazawa K, Tsukada K (2000) Tumor regression by inductive hyperthermia combined with hepatic embolization using dextran magnetite-incorporated microspheres in rats. Int J Oncol 16:1153–1158. doi:10.3892/ijo.16.6.1153 Minamimura T, Sato H, Kasaoka S, Saito T, Ishizawa S, Takemori S, Tazawa K, Tsukada K (2000) Tumor regression by inductive hyperthermia combined with hepatic embolization using dextran magnetite-incorporated microspheres in rats. Int J Oncol 16:1153–1158. doi:10.3892/ijo.16.6.1153
65.
Zurück zum Zitat Miyazaki T, Anan S, Ishida E, Kawashita M (2013) Carboxymethyldextran/magnetite hybrid microspheres designed for hyperthermia. J Mater Sci Mater Med 24:1125–1129. doi:10.1007/s10856-013-4874-9CrossRef Miyazaki T, Anan S, Ishida E, Kawashita M (2013) Carboxymethyldextran/magnetite hybrid microspheres designed for hyperthermia. J Mater Sci Mater Med 24:1125–1129. doi:10.1007/s10856-013-4874-9CrossRef
66.
Zurück zum Zitat Matsumine A, Kusuzaki K, Matsubara T, Shintani K, Satonaka H, Wakabayashi T, Miyazaki S, Morita K, Takegami K, Uchida A (2007) Novel hyperthermia for metastatic bone tumors with magnetic materials by generating an alternating electromagnetic field. Clin Exp Metastasis 24:191–200. doi:10.1007/s10585-007-9068-8CrossRef Matsumine A, Kusuzaki K, Matsubara T, Shintani K, Satonaka H, Wakabayashi T, Miyazaki S, Morita K, Takegami K, Uchida A (2007) Novel hyperthermia for metastatic bone tumors with magnetic materials by generating an alternating electromagnetic field. Clin Exp Metastasis 24:191–200. doi:10.1007/s10585-007-9068-8CrossRef
67.
Zurück zum Zitat Kawashita M, Kawamura K, Li Z (2010) PMMA-based bone cements containing magnetite particles for the hyperthermia of cancer. Acta Biomater 6:3187–3192. doi:10.1016/j.actbio.2010.02.047CrossRef Kawashita M, Kawamura K, Li Z (2010) PMMA-based bone cements containing magnetite particles for the hyperthermia of cancer. Acta Biomater 6:3187–3192. doi:10.1016/j.actbio.2010.02.047CrossRef
68.
Zurück zum Zitat Li Z, Kawamura K, Kawashita M, Kudo T, Kanetaka H, Hiraoka M (2012) In vitro heating capability, mechanical strength and biocompatibility assessment of PMMA-based bone cement containing magnetite nanoparticles for hyperthermia of cancer. J Biomed Mater Res 100A:2537–2545. doi:10.1002/jbm.a.34185CrossRef Li Z, Kawamura K, Kawashita M, Kudo T, Kanetaka H, Hiraoka M (2012) In vitro heating capability, mechanical strength and biocompatibility assessment of PMMA-based bone cement containing magnetite nanoparticles for hyperthermia of cancer. J Biomed Mater Res 100A:2537–2545. doi:10.1002/jbm.a.34185CrossRef
69.
Zurück zum Zitat Kuwahara Y, Miyazaki T, Shirosaki Y, Kawashita M (2014) Effects of organic polymer addition in magnetite synthesis on its crystalline structure. RSC Adv 4:23359–23363. doi:10.1039/C4RA02073ACrossRef Kuwahara Y, Miyazaki T, Shirosaki Y, Kawashita M (2014) Effects of organic polymer addition in magnetite synthesis on its crystalline structure. RSC Adv 4:23359–23363. doi:10.1039/C4RA02073ACrossRef
70.
Zurück zum Zitat Hayashi K, Moriya M, Sakamoto W, Yogo T (2009) Chemoselective synthesis of folic acid – functionalized magnetite nanoparticles via click chemistry for magnetic hyperthermia. Chem Mater 21:1318–1325. doi:10.1021/cm803113eCrossRef Hayashi K, Moriya M, Sakamoto W, Yogo T (2009) Chemoselective synthesis of folic acid – functionalized magnetite nanoparticles via click chemistry for magnetic hyperthermia. Chem Mater 21:1318–1325. doi:10.1021/cm803113eCrossRef
71.
Zurück zum Zitat Shinkai M, Yanase M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T (1996) Intracellular hyperthermia for cancer using magnetite cationic liposomes: in vitro study. Jpn J Cancer Res 87:1179–1183. doi:10.1111/j.1349-7006.1996.tb03129.xCrossRef Shinkai M, Yanase M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T (1996) Intracellular hyperthermia for cancer using magnetite cationic liposomes: in vitro study. Jpn J Cancer Res 87:1179–1183. doi:10.1111/j.1349-7006.1996.tb03129.xCrossRef
72.
Zurück zum Zitat Ito A, Hibino E, Kobayashi C, Terasaki H, Kagami H, Ueda M, Kobayashi T, Honda H (2005) Construction and delivery of tissue-engineered human retinal pigment epithelial cell sheets, using magnetite nanoparticles and magnetic force. Tissue Eng 11:489–496. doi:10.1089/ten.2005.11.489CrossRef Ito A, Hibino E, Kobayashi C, Terasaki H, Kagami H, Ueda M, Kobayashi T, Honda H (2005) Construction and delivery of tissue-engineered human retinal pigment epithelial cell sheets, using magnetite nanoparticles and magnetic force. Tissue Eng 11:489–496. doi:10.1089/ten.2005.11.489CrossRef
73.
Zurück zum Zitat Erbe EM, Day DE (1987) Chemical durability of Y2O3-Al2O3-SiO2 glasses for the in vivo delivery of beta radiation. J Biomed Mater Res 27:1301–1308. doi:10.1002/jbm.820271010CrossRef Erbe EM, Day DE (1987) Chemical durability of Y2O3-Al2O3-SiO2 glasses for the in vivo delivery of beta radiation. J Biomed Mater Res 27:1301–1308. doi:10.1002/jbm.820271010CrossRef
74.
Zurück zum Zitat Kawashita M, Takayama Y, Kokubo T, Takaoka GH, Araki N, Hiraoka M (2006) Enzymatic preparation of hollow yttrium oxide microspheres for in situ radiotherapy of deep-seated cancer. J Am Ceram Soc 89:1347–1351. doi:10.1111/j.1551-2916.2005.00867.xCrossRef Kawashita M, Takayama Y, Kokubo T, Takaoka GH, Araki N, Hiraoka M (2006) Enzymatic preparation of hollow yttrium oxide microspheres for in situ radiotherapy of deep-seated cancer. J Am Ceram Soc 89:1347–1351. doi:10.1111/j.1551-2916.2005.00867.xCrossRef
75.
Zurück zum Zitat Miyazaki T, Kai T, Ishida E, Kawashita M, Hiraoka M (2010) Fabrication of yttria microcapsules for radiotherapy from water/oil emulsion. J Ceram Soc Jpn 118:479–482. doi:10.2109/jcersj2.118.479CrossRef Miyazaki T, Kai T, Ishida E, Kawashita M, Hiraoka M (2010) Fabrication of yttria microcapsules for radiotherapy from water/oil emulsion. J Ceram Soc Jpn 118:479–482. doi:10.2109/jcersj2.118.479CrossRef
76.
Zurück zum Zitat Kawashita M, Matsui N, Li Z, Miyazaki T, Kanetaka H (2011) Preparation, structure, and in vitro chemical durability of yttrium phosphate microspheres for intra-arterial radiotherapy. J Biomed Mater Res B Appl Biomater 99:45–50. doi:10.1002/jbm.b.31870CrossRef Kawashita M, Matsui N, Li Z, Miyazaki T, Kanetaka H (2011) Preparation, structure, and in vitro chemical durability of yttrium phosphate microspheres for intra-arterial radiotherapy. J Biomed Mater Res B Appl Biomater 99:45–50. doi:10.1002/jbm.b.31870CrossRef
77.
Zurück zum Zitat Miyazaki T, Suda T, Shirosaki Y, Kawashita M (2014) Fabrication of yttrium phosphate microcapsules by an emulsion route for in situ cancer radiotherapy. J Med Biol Eng 34:14–17. doi:10.5405/jmbe.1451CrossRef Miyazaki T, Suda T, Shirosaki Y, Kawashita M (2014) Fabrication of yttrium phosphate microcapsules by an emulsion route for in situ cancer radiotherapy. J Med Biol Eng 34:14–17. doi:10.5405/jmbe.1451CrossRef
78.
Zurück zum Zitat Schubiger PA, Beer HF, Geiger L, Rösler H, Zimmermann A, Triller J, Mettler D, Schilt W (1991) 90Y-resin particles – animal experiments on pigs with regard to the introduction of superselective embolization therapy. Int J Rad Appl Instrum B 18:305–311. doi:10.1016/0883-2897(91)90126-6CrossRef Schubiger PA, Beer HF, Geiger L, Rösler H, Zimmermann A, Triller J, Mettler D, Schilt W (1991) 90Y-resin particles – animal experiments on pigs with regard to the introduction of superselective embolization therapy. Int J Rad Appl Instrum B 18:305–311. doi:10.1016/0883-2897(91)90126-6CrossRef
79.
Zurück zum Zitat Venkatachalam N, Saito Y, Soga K (2009) Synthesis of Er3+ doped Y2O3 nanophosphors. J Am Ceram Soc 92:1006–1010. doi:10.1111/j.1551-2916.2009.02986.xCrossRef Venkatachalam N, Saito Y, Soga K (2009) Synthesis of Er3+ doped Y2O3 nanophosphors. J Am Ceram Soc 92:1006–1010. doi:10.1111/j.1551-2916.2009.02986.xCrossRef
80.
Zurück zum Zitat Uo M, Kudo E, Okada A, Soga K, Kogo Y (2009) Preparation and properties of dental composite resin cured under near infrared irradiation. J Photopolym Sci Technol 22:551–554. doi:10.2494/photopolymer.22.551CrossRef Uo M, Kudo E, Okada A, Soga K, Kogo Y (2009) Preparation and properties of dental composite resin cured under near infrared irradiation. J Photopolym Sci Technol 22:551–554. doi:10.2494/photopolymer.22.551CrossRef
Metadaten
Titel
Ceramic-Polymer Composites for Biomedical Applications
verfasst von
Toshiki Miyazaki
Masakazu Kawashita
Chikara Ohtsuki
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-12460-5_16

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.