Skip to main content

2015 | OriginalPaper | Buchkapitel

2. Accounting for the Wealth of Nations

verfasst von : Matthew Kuperus Heun, Michael Carbajales-Dale, Becky Roselius Haney

Erschienen in: Beyond GDP

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mainstream economic models, which typically exclude physical transactions between the economy and the biosphere, are incomplete: wastes, pollution, natural resource extraction, and use of ecosystem services are not included. When economic policy is informed by these incomplete models, unexpected negative outcomes can arise. In this chapter, we suggest that the reason for the incompleteness of mainstream economic models is that we incorrectly understand the economy through the outdated metaphor of the economy as a machine. We describe three eras of thinking about the economy, its relationship to the biosphere, and the metaphors that emerged during each era. We argue that as the world enters the age of resource depletion, it is time for a new metaphor: the economy is society’s \emph{metabolism}. We describe the metabolic processes of anabolism, catabolism, and autophagy and draw analogies to key economic processes: capital formation, energy production, and recycling. Based on the machine metaphor, today’s economic policies are unable to address important issues such as appropriate levels and types of capital formation, efficient energy production, wise use of recycling, and the appropriate scale of the economy relative to the biosphere. The problem is compounded by today’s national accounting, which fails to count many beneficial activities in GDP, simply because because GDP measures only what is produced. Thus, wise and beneficial long-term decisions that would that preserve or enhance natural capital (such as refraining from clearcutting forests) might, ultimately, reduce GDP. We conclude that navigating through the age of resource depletion will require expanded national accounting that captures robust, annual data on the entire portfolio of a nation’s wealth (manufactured and natural capital) in addition to data on national income (GDP). The chapter ends with a description of the structure of the rest of the book.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The use of mechanical metaphor language in Chap. 1 was a deliberate decision to bring attention to the dominant metaphors of the day.
 
2
Roughly speaking, 1850–1973, with pauses for the World Wars.
 
3
Approximately, 1973–2003.
 
4
From 2003 to the present.
 
5
In this section, the term “national accounting” does not connote the Systems of National Accounts (SNAs) that are necessilarly financial in nature. Rather, we are using “national accounting” to indicate accounting of a variety of quantities at the national level in both physical as well as financial terms, including energy production and consumption, material extraction rates, and ecosystem services.
 
6
It should be noted that there were local examples of resource constraints, such as caused population declines in the Maya [2].
 
7
There are notable local exceptions such as the lethal 1952 smog cloud in London, caused by coal-burning power station emissions, that, according to some, claimed as many as 12,000 lives [3,4]; pollution in the Cuyahoga river and Love Canal; and the legendary smog problems in Los Angeles.
 
8
Constant elasticity of substitution (CES) production functions also appeared in this era. CES productions functions have the form
$$ y = A { \left[ \delta_1 k^\rho + (1-\delta_1) l^\rho \right]} ^{\frac{1}{\rho}},$$
where δ1 is the factor share for capital (k), \(\rho \equiv \frac{1}{1-\sigma}\), and σ is the elasticity of substitution between capital (k) and labor (l) [9]. Although the form of the CES model is different from the Cobb–Douglas equation, the functional relationship remains the same: output (y) is a function of manufactured capital (k) and labor (l) only.
 
9
Natural resources, including energy, were, and still are, included in Systems of National Accounts as costs. They are counted in financial units (dollars and yen), not physical units (barrels, tonnes, and gigajoules).
 
10
To this day, the US national accounts still do not include interactions between the economy and the biosphere.
 
11
Because Fig. 2.1 has no flow of energy into the economy, we may consider the traditional model of the economy to be a perpetual motion machine of the first kind: the economy works without the input of energy, thus violating the first law of thermodynamics—the law of conservation of energy [10].
 
12
This fallacious process is known as reification; the making (facere, Latin) real of something (res, Latin) that is merely an idea. Alfred Whitehead refers to this as the fallacy of misplaced concreteness [13].
 
13
For example, the October 1973–March 1974 oil embargo against Canada, Japan, the Netherlands, the UK, and the US was a response to the US decision to supply arms to Israel during the Yom Kippur War.
 
14
For example, the 1979 Iranian revolution disrupted oil supply.
 
15
An isolated system is one that allows no material or energy transfers across its boundary, for example, a perfectly insulated flask. A closed system is one that allows energy but not materials to cross its boundary, such as a greenhouse. A open system, such as a lake, river or ocean, allows both material and energy transfers across its boundary.
 
16
It must be said that the effort to include energy as anything other than a cost of production remains outside the economic mainstream even today.
 
17
There is debate in the literature about quantification of energy input to the economy (e). Most researchers use the thermal equivalent of primary energy [1922]. Others use useful work obtained by efficiencies from primary exergy [23].
 
18
The Constant Elasticity of Substitution (CES) production function can be augmented with energy in several ways, depending upon the desired nesting of energy (e) relative to the other factors of production (capital, k, and labor, l) [23, 25]. Three options exist, but a common approach is:
$$ y = A \: {\left\{\delta{\left[ \delta_1 k^{-\rho_1} + (1-\delta_1)l^{-\rho_1} \right]} ^{\rho/\rho_1} + (1-\delta) e^{-\rho} \right\} } ^{-1/\rho}.$$
 
19
Again, we are using the term “national accounting” not in the sense of SNA but rather in the sense of data collected at the national level.
 
20
As opposed to financial units (currency). Physical units include barrels of oil, tonnes of coal, and gigajoule energy values.
 
21
The depiction of the economy in Fig. 2.2 can be classified as a perpetual motion machine of the second kind: it perfectly converts energy resources into useful output without generating any entropy, in violation of the second law of thermodynamics.
 
22
See England [31] for a starting point.
 
23
An incomplete list of authors who are either (a) progenitors for or (b) directly associated with the metabolism metaphor includes Georgescu-Roegen [31], Odum [32], Daly [33], and Hall [34], Heijman [35], Haberl [36], Fischer-Kowalski [37], Liu and Hanauer [38], and Giampietro [39].
 
24
We note that several areas of the literature speak to the items in this list. Materials flow analysis (MFA) and economy-wide materials flow analysis (EW-MFA) stress the importance of material intake by the economy. (see Sect. 3.​5.) The input–output (I–O) method highlights the effects of internal exchanges of material and information with economies. (see Chap. 7.) Life-cycle assessment (LCA) techniques focus attention on otherwise-neglected wastes. (see Sect.7.​8.) Net energy analysis (NEA) predicts that energy resource scarcity reduces energy return on investment (EROI) and increases energy prices. (see Sects. 1.​5 and 4.​3.) The energy input–output (EI–O) method gives prominence to energetic costs of internal material and energy flows. (see Chap. 7.) And, thermodynamic control-volume modeling describes transient behavior and system transformations. (see Chaps. 36.)
 
25
The Greek root of metabolism (metabol\={e}) means “change.”
 
26
The field most closely associated with the metabolism metaphor is materials flow analysis (MFA). To be fair, materials flow analysts clearly acknowledge that materials flow into the economy (minerals and ores, especially), in part, for the purpose of building up stocks of technical infrastructure (buildings), livestock, and people [37, p. 116]. However, there is little emphasis on quantifying levels of material stock in Materials Flow Analysis, as its name implies. In fact, the equations in MFA [37, Eq. 1] are almost always written as
$$ \mathrm{inflow} = \mathrm{outflow} + \mathrm{accumulation,}$$
reflecting the focus on material inflow to the economy. In this book, similar equations (see Eq. 3.​2) are written as
$$ \mathrm{accumulation} = \mathrm{inflow} - \mathrm{outflow,}$$
thereby focusing on accumulation of stocks within the economy.
 
27
For the purposes of this discussion, our focus is on metabolic processes as they occur in eukaryotic animal cells (cells with a nucleus containing genetic material), thereby avoiding complexities associated with organisms that also perform photosynthesis.
 
28
Despite the recent change allowing new car purchases by individuals, astronomical import taxes mean that Cuban streets remain populated with vintage 1950s autos [41].
 
29
See Sect. 1.​3.​2 for a discussion of depletion of a nonrecyclable natural resource, oil.
 
30
On a per-unit-mass basis, Kleiber’s Law becomes
$$\frac{\dot{Q}}{m} = q_{0} m^{-1/4},$$
(2.6)
from which it can be seen that larger organisms (larger mass, m) consume less energy per unit mass (\(\dot{Q}/m\)), and smaller organisms consume more energy per unit mass.
 
Literatur
1.
Zurück zum Zitat Box GEP, Draper NR. Empirical model-building and response surfaces. Oxford: Wiley; 1987. Box GEP, Draper NR. Empirical model-building and response surfaces. Oxford: Wiley; 1987.
2.
Zurück zum Zitat Lisa L. The collapse of the Classic Maya: a case for the role of water control. American Anthropologist, Wiley Online Library. 2002;104(3):814–826 Lisa L. The collapse of the Classic Maya: a case for the role of water control. American Anthropologist, Wiley Online Library. 2002;104(3):814–826
3.
Zurück zum Zitat Davis DL. A look back at the London smog of 1952 and the half century since. Environmental health perspectives. 2002;110(12):A73–4. Davis DL. A look back at the London smog of 1952 and the half century since. Environmental health perspectives. 2002;110(12):A73–4.
4.
Zurück zum Zitat Bell ML, Davis DL, Fletcher T. A retrospective assessment of mortality from the London smog episode of 1952: the role of influenza and pollution. Environ Health Perspect. 2004;112(1):6.CrossRef Bell ML, Davis DL, Fletcher T. A retrospective assessment of mortality from the London smog episode of 1952: the role of influenza and pollution. Environ Health Perspect. 2004;112(1):6.CrossRef
5.
Zurück zum Zitat Ingrao B, Israeland G, McGilvray I. The invisible hand: economic equilibrium in the history of science. MA: MIT Press Cambridge; 1990.MATH Ingrao B, Israeland G,  McGilvray I. The invisible hand: economic equilibrium in the history of science. MA: MIT Press Cambridge; 1990.MATH
6.
Zurück zum Zitat Walras L. Geometrical theory of the determination of prices. The ANNALS Am Acad Polit Soc Sci. 1892;3(1):45–64.CrossRef Walras L. Geometrical theory of the determination of prices. The ANNALS Am Acad Polit Soc Sci. 1892;3(1):45–64.CrossRef
7.
Zurück zum Zitat Walras L. The equilibrium economics London: Routledge; 1993. Walras L. The equilibrium economics London: Routledge; 1993.
8.
Zurück zum Zitat Odum H T. Environmental accounting: EMERGY and environmental decision making. New York: Wiley; 1996. Odum H T. Environmental accounting: EMERGY and environmental decision making. New York: Wiley; 1996.
9.
Zurück zum Zitat Solow RM. A contribution to the theory of economic growth. Q J Econ. 1956;70(1):65–94.CrossRef Solow RM. A contribution to the theory of economic growth. Q J Econ. 1956;70(1):65–94.CrossRef
10.
Zurück zum Zitat Rao YVC. An introduction to thermodynamics. Hyderabad: Universities Press; 2004. Rao YVC. An introduction to thermodynamics. Hyderabad: Universities Press; 2004.
11.
Zurück zum Zitat Daly HE. Consumption and welfare: two views of value added. Rev Soc Econ. 1995;53(4):451–73.CrossRef Daly HE. Consumption and welfare: two views of value added. Rev Soc Econ. 1995;53(4):451–73.CrossRef
12.
Zurück zum Zitat Ayres R. Turning point: end of the growth paradigm. New York: Earthscan; August 1997. Ayres R. Turning point: end of the growth paradigm. New York: Earthscan; August 1997.
13.
Zurück zum Zitat Whitehead AN. Science and the modern world. Cambridge: Cambridge University Press; 1926 (2011). Whitehead AN. Science and the modern world. Cambridge: Cambridge University Press; 1926 (2011).
14.
Zurück zum Zitat Gilliland MW. Energy analysis and public policy. Science. 1975;189(4208):1051–6.CrossRef Gilliland MW. Energy analysis and public policy. Science. 1975;189(4208):1051–6.CrossRef
15.
Zurück zum Zitat Chapman P. Energy analysis: a review of methods and applications. Omega. 1976;4(1):19–33.CrossRef Chapman P. Energy analysis: a review of methods and applications. Omega. 1976;4(1):19–33.CrossRef
16.
Zurück zum Zitat Norgaard RB. Ecosystem services: from eye-opening metaphor to complexity blinder. Ecol Econ. 2010;69(6):1219–27.CrossRef Norgaard RB. Ecosystem services: from eye-opening metaphor to complexity blinder. Ecol Econ. 2010;69(6):1219–27.CrossRef
17.
Zurück zum Zitat Kavrakoglu I. Modelling energy-economy interactions. Eur J Op Res. 1983;13(1):29–40.CrossRef Kavrakoglu I. Modelling energy-economy interactions. Eur J Op Res. 1983;13(1):29–40.CrossRef
18.
Zurück zum Zitat Kümmel R, Strassl W, Gossner A, Eichhorn W. Technical progress and energy dependent production functions. J Econ. 1985;45(3):285–311.CrossRefMATH Kümmel R, Strassl W, Gossner A, Eichhorn W. Technical progress and energy dependent production functions. J Econ. 1985;45(3):285–311.CrossRefMATH
19.
Zurück zum Zitat Cleveland CJ, Costanza R, Hall CAS. Energy and the US economy: a biophysical perspective. Science. 1984;225:890–7.CrossRef Cleveland CJ, Costanza R, Hall CAS. Energy and the US economy: a biophysical perspective. Science. 1984;225:890–7.CrossRef
20.
Zurück zum Zitat Fröling M. Energy use, population and growth, 1800–1970. J Popul Econ. 2009;24(3):1133–63.CrossRef Fröling M. Energy use, population and growth, 1800–1970. J Popul Econ. 2009;24(3):1133–63.CrossRef
21.
Zurück zum Zitat Stern DI, Kander A. The role of energy in the industrial revolution and modern economic growth. Energy J. July 2012;33(3):125–52. Stern DI, Kander A. The role of energy in the industrial revolution and modern economic growth. Energy J. July 2012;33(3):125–52.
22.
Zurück zum Zitat Nel WP, van Zyl G. Defining limits: energy constrained economic growth. Appl Energy. 2010;87(1):168–77.CrossRef Nel WP, van Zyl G. Defining limits: energy constrained economic growth. Appl Energy. 2010;87(1):168–77.CrossRef
23.
Zurück zum Zitat Ayres RU, Warr BS. The economic growth engine: how energy and work drive material propserity. Cheltenham: Edward Elgar; 2010. Ayres RU, Warr BS. The economic growth engine: how energy and work drive material propserity. Cheltenham: Edward Elgar; 2010.
24.
Zurück zum Zitat Rath-Nagel S, Voß A. Energy models for planning and policy assessment. Eur J Op Res. 1981;8(2):99–114.CrossRef Rath-Nagel S, Voß A. Energy models for planning and policy assessment. Eur J Op Res. 1981;8(2):99–114.CrossRef
25.
Zurück zum Zitat van der Zwaan BCC Gerlagh R Klaassen G Schrattenholzer L. Endogenous technological change in climate change modelling. Energy Econ. 2002;24(1):1–19.CrossRef van der Zwaan BCC Gerlagh R Klaassen G Schrattenholzer L. Endogenous technological change in climate change modelling. Energy Econ. 2002;24(1):1–19.CrossRef
26.
Zurück zum Zitat Kümmel R. Growth dynamics of the energy dependent economy. mathematical systems in economics.Cambridge, Massachusetts: Oeigeschlager, Gunn, and Hain; 1980. Kümmel R. Growth dynamics of the energy dependent economy. mathematical systems in economics.Cambridge, Massachusetts: Oeigeschlager, Gunn, and Hain; 1980.
27.
Zurück zum Zitat Kümmel R. The impact of energy on industrial growth. Energy. 1982;7(2):189–203.CrossRef Kümmel R. The impact of energy on industrial growth. Energy. 1982;7(2):189–203.CrossRef
31.
Zurück zum Zitat England RW. Natural capital and the theory of economic growth. Ecol Econ. 2000;34:425–31.CrossRef England RW. Natural capital and the theory of economic growth. Ecol Econ. 2000;34:425–31.CrossRef
32.
Zurück zum Zitat Georgescu-Roegen N. The entropy law and the economic process. Cambridge: Harvard University Press; 1971. Georgescu-Roegen N. The entropy law and the economic process. Cambridge: Harvard University Press; 1971.
33.
Zurück zum Zitat Odum HT. Energy, ecology, and economics. Ambio. 1973;2(6):220–7. Odum HT. Energy, ecology, and economics. Ambio. 1973;2(6):220–7.
34.
Zurück zum Zitat Daly HE. Steady-state economics. San Francisco: Island Press Washington; 1977. Daly HE. Steady-state economics. San Francisco: Island Press Washington; 1977.
35.
Zurück zum Zitat Hall CAS, Cleveland CJ, Kaufman R. Energy and resource quality: the ecology of the economic process. New York: John Wiley & Sons; 1986. Hall CAS, Cleveland CJ, Kaufman R. Energy and resource quality: the ecology of the economic process. New York: John Wiley & Sons; 1986.
36.
Zurück zum Zitat Heijman W. The economic metabolism. Dordrecht: Kluwer; 1988. Heijman W. The economic metabolism. Dordrecht: Kluwer; 1988.
37.
Zurück zum Zitat Haberl H. The energetic metabolism of societies part i: accounting concepts. J Ind Ecol. 2001;5(1):11–33.CrossRef Haberl H. The energetic metabolism of societies part i: accounting concepts. J Ind Ecol. 2001;5(1):11–33.CrossRef
38.
Zurück zum Zitat Fischer-Kowalski M, Hüttler W. Society’s metabolism. J Ind Ecol. 1999;2(4):107–36.CrossRef Fischer-Kowalski M, Hüttler W. Society’s metabolism. J Ind Ecol. 1999;2(4):107–36.CrossRef
40.
Zurück zum Zitat Giampietro M, Mayumi K. Multiple-scale integrated assessment of societal metabolism: introducing the approach. Popul Environ. 2000;22(2):109–53.CrossRef Giampietro M, Mayumi K. Multiple-scale integrated assessment of societal metabolism: introducing the approach. Popul Environ. 2000;22(2):109–53.CrossRef
41.
Zurück zum Zitat Schweid R. Che’s Chevrolet, Fidel’s Oldsmobile: on the road in Cuba. Chapel Hill: University of North Carolina Press; 2004. Schweid R. Che’s Chevrolet, Fidel’s Oldsmobile: on the road in Cuba. Chapel Hill: University of North Carolina Press; 2004.
42.
Zurück zum Zitat Jay Ramey. New car sales in Cuba soured by 400-percent Markups. Autoweek. 2014 April 5. Jay Ramey. New car sales in Cuba soured by 400-percent Markups. Autoweek. 2014 April 5.
43.
44.
Zurück zum Zitat United Nations. System of Environmental-Economic Accounting 2012 Central Framework. United Nations Statistics Division; 2014. United Nations. System of Environmental-Economic Accounting 2012 Central Framework. United Nations Statistics Division; 2014.
45.
Zurück zum Zitat Kümmel R. The second law of economics: energy, entropy, and the origins of wealth. New York: Springer; June 2011. Kümmel R. The second law of economics: energy, entropy, and the origins of wealth. New York: Springer; June 2011.
Metadaten
Titel
Accounting for the Wealth of Nations
verfasst von
Matthew Kuperus Heun
Michael Carbajales-Dale
Becky Roselius Haney
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-12820-7_2