Skip to main content

Graph Drawing Using Dimension Reduction Methods

  • Conference paper

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 334))

Abstract

Graphs are common data structures in computer science used to capture relations between set of objects. Graph drawing is a visual representation of the graph in more readable form, usually with vertices projected into ℝ2 space. Dimension reduction methods are designed to transform original data in high-dimensional space into a new data in lower-dimensional space. This work is focused on selected dimension reduction methods and their use to obtain sensible graph drawing from the original graph. Results of the dimension reduction methods are discussed and compared to each other and also to the classical approach presented by Kamada and Kawai.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics 2(4), 433–459 (2010)

    Article  Google Scholar 

  2. Aldous, D., Fill, J.A.: Reversible markov chains and random walks on graphs (2002), unfinished monograph, recompiled 2014

    Google Scholar 

  3. Arenas, A.: Alex arenas website (2009), http://deim.urv.cat/~aarenas/data/welcome

  4. Chan, T.M.: All-pairs shortest paths for unweighted undirected graphs in o(mn) time. In: Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 514–523 (2006)

    Google Scholar 

  5. Cohen, R.F., Battista, G.D., Tamassia, R., Tollis, I.G.: A framework for dynamic graph drawing. Congressus Numerantium 42, 149–160 (1992)

    Google Scholar 

  6. Coifman, R.R., Lafon, S.: Diffusion maps. Applied and Computational Harmonic Analysis 21(1), 5–30 (2006); Special Issue: Diffusion Maps and Wavelets

    Google Scholar 

  7. Cunningham, P.: Dimension reduction. In: Machine Learning Techniques for Multimedia, pp. 91–112. Springer (2008)

    Google Scholar 

  8. Cureton, E., D’Agostino, R.: Factor Analysis: An Applied Approach. Taylor & Francis (2013)

    Google Scholar 

  9. Díaz, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Comput. Surv. 34(3), 313–356 (2002)

    Article  Google Scholar 

  10. Diestel, R.: Graph Theory. Electronic library of mathematics. Springer (2006)

    Google Scholar 

  11. Forrester, D., Kobourov, S.G., Navabi, A., Wampler, K., Yee, G.V.: Graphael: A system for generalized force-directed layouts. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 454–464. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Exper. 21(11), 1129–1164 (1991)

    Article  Google Scholar 

  13. Gross, J.L., Yellen, J.: Graph Theory and Its Applications, Second Edition (Discrete Mathematics and Its Applications). Chapman & Hall/CRC (2005)

    Google Scholar 

  14. Harman, H.: Modern Factor Analysis. University of Chicago Press (1976)

    Google Scholar 

  15. Herman, I., Society, I.C., Melançon, G., Marshall, M.S.: Graph visualization and navigation in information visualization: a survey. IEEE Transactions on Visualization and Computer Graphics 6, 24–43 (2000)

    Article  Google Scholar 

  16. Hinton, G.E., Roweis, S.T.: Stochastic neighbor embedding. In: NIPS, pp. 833–840 (2002)

    Google Scholar 

  17. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Information Processing Letters 31(1), 7–15 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kaufmann, M., Wagner, D. (eds.): Drawing Graphs. LNCS, vol. 2025. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  19. Kobourov, S.G.: Spring embedders and force directed graph drawing algorithms. CoRR abs/1201.3011 (2012)

    Google Scholar 

  20. Koren, Y.: Drawing graphs by eigenvectors: theory and practice. Computers and Mathematics with Applications 49(11-12), 1867–1888 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kullback, S., Leibler, R.A.: On information and sufficiency. The Annals of Mathematical Statistics 22(1), 79–86 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  22. Meyerhenke, H.: 10th dimacs implementation challenge - graph partitioning and graph clustering (2012)

    Google Scholar 

  23. Nadler, B., Lafon, S., Coifman, R.R., Kevrekidis, I.G.: Diffusion maps, spectral clustering and reaction coordinates of dynamical systems. Applied and Computational Harmonic Analysis 21(1), 113–127 (2006); Special Issue: Diffusion Maps and Wavelets

    Article  MATH  MathSciNet  Google Scholar 

  24. Newmann, M.: Network data (2013), http://www-personal.umich.edu/~mejn/netdata/

  25. Norris, J.: Markov Chains, No. č 2008. Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge Series in (1998)

    Google Scholar 

  26. Plastria, F., De Bruyne, S., Carrizosa, E.: Dimensionality reduction for classification. In: Tang, C., Ling, C.X., Zhou, X., Cercone, N.J., Li, X. (eds.) ADMA 2008. LNCS (LNAI), vol. 5139, pp. 411–418. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  27. Seidel, R.: On the all-pairs-shortest-path problem in unweighted undirected graphs. J. Comput. Syst. Sci. 51(3), 400–403 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sorzano, C.O.S., Vargas, J., Pascual-Montano, A.D.: A survey of dimensionality reduction techniques. CoRR abs/1403.2877 (2014)

    Google Scholar 

  29. Zaoralek, L., Peterek, T., Dohnálek, P., Gajdos, P.: Comparison of feature reduction methods in the task of arrhythmia classification. In: IBICA, pp. 375–382 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Buriánek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Buriánek, T., Zaorálek, L., Snášel, V., Peterek, T. (2015). Graph Drawing Using Dimension Reduction Methods. In: Abraham, A., Krömer, P., Snasel, V. (eds) Afro-European Conference for Industrial Advancement. Advances in Intelligent Systems and Computing, vol 334. Springer, Cham. https://doi.org/10.1007/978-3-319-13572-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13572-4_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13571-7

  • Online ISBN: 978-3-319-13572-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics