Skip to main content

Chemistry, Biochemistry of Nanoparticles, and Their Role in Antioxidant Defense System in Plants

  • Chapter
  • First Online:
Nanotechnology and Plant Sciences

Abstract

As time passes, engineered nanoparticles (ENPs) are more frequently found in medical and consumer products, as well as in industrial and agricultural applications. The intensive production, use, and disposal of ENPs-containing wastes increase the likelihood of emission of such products to the environment. During the last two decades, a body of scientific literature has shown that ENPs interact with living components of ecosystems in different ways. The literature indicates that ENPs impact on plant growth, cell structure, and physiological and biochemical functions. In this chapter we discuss the stress induced by ENPs on higher plants. Although some references about carbon-based ENPs are included, most of the references are related to metal-based ENPs. The discussion is mainly focused on the effects of ENPs on photosystems and the mechanisms of generation/scavenging of reactive oxygen species (ROS). Effects on the enzymes catalase (CAT), guaiacol peroxidase (GPOX), ascorbate peroxidase (APOX), superoxide dismutase (SOD), glutathione reductase (GR), and dehydroascorbate reductase (DHAR) are discussed. Information about low molecular weight antioxidant thiols (GSSG or GSH) and ascorbate is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Society for Testing and Materials (ASTM) (2012) Standard terminology relating to nanotechnology. ASTM E2456-06. http://www.astm.org/Standards/E2456.htm

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol 55:379–399

    Article  Google Scholar 

  • Barazzouk S, Kamat PV, Hotchandani S (2005) Photoinduced electron transfer between chlorophyll a and gold nanoparticles. J Phys Chem B 109:716–723

    Article  CAS  PubMed  Google Scholar 

  • Begum P, Ikhtiari R, Fugetsu B (2011) Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon 49:3907–3919

    Article  CAS  Google Scholar 

  • Beyer SR, Ullrich S, Kudera S et al (2011) Hybrid nanostructures for enhanced light-harvesting: plasmon induced increased in fluorescence from individual photosynthetic pigment-protein complexes. Nano Lett 11:4897–4901

    Article  CAS  PubMed  Google Scholar 

  • Boghossian AA, Sen F, Gibbons BM et al (2013) Application of nanoparticle antioxidants to enable hyperstable chloroplasts for solar energy harvesting. Adv Energy Mater 3:881–893

    Article  CAS  Google Scholar 

  • Bujak N, Czechowski D, Piatkowski R et al (2011) Fluorescence enhancement of light-harvesting complex 2 from purple bacteria coupled to spherical gold nanoparticles. Appl Phys Lett 99:173701–173703

    Article  Google Scholar 

  • De Gara L, de Pinto MC, Tommasi F (2003) The antioxidant systems vis-à-vis reactive oxygen species during plant–pathogen interaction. Plant Physiol Biochem 41:863–870

    Article  Google Scholar 

  • Dimpka CO, Latta ED, McLean JE et al (2013) Fate of CuO and ZnO nano- and microparticles in the plant environment. Environ Sci Technol 47:4734–4742

    Article  Google Scholar 

  • Faisal M, Saquib Q, Alatar AA et al (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater 250–251:318–332

    Article  PubMed  Google Scholar 

  • Falco WF, Botero ER, Falcao EA et al (2011) In vivo observation of chlorophyll fluorescence quenching induced by gold nanoparticles. J Photochem Photobiol A 225:65–71

    Article  CAS  Google Scholar 

  • Foltete AS, Masfaraud JF, Bigorgne E et al (2011) Environmental impact of sunscreen nanomaterials: ecotoxicity and gentoxicity of altered TiO2 nanocomposites on Vicia faba. Environ Pollut 159:2515–2522

    Article  CAS  PubMed  Google Scholar 

  • Fenoglio I, Greco G, Livraghi S et al (2009) Non-UV-induced radical reactions at the surface of TiO2 nanoparticles that may trigger toxic responses. Chem Eur J 15:4614–4621

    Article  CAS  PubMed  Google Scholar 

  • Fraire-Velázquez S, Rodríguez-Guerra R, Sánchez-Calderón L (2011) Abiotic and biotic stress response crosstalk in plants. In: Shanker AK, Venkateswarlu B (eds) Abiotic stress response in plants- physiological, biochemical and genetic perspectives. InTech, Rijeka, pp 3–26

    Google Scholar 

  • Fubini B, Fenoglio I, Tomatis M (2007) Physicochemical characteristics of nanoparticles that determine potential toxicity. In: Monteiro-Riviere NA, Tran CL (eds) Nanotoxicology: characterization, dosing, and health effects. Informa Healthcare, New York, pp 59–70

    Google Scholar 

  • Gao J, Xu G, Qian H et al (2013) Effects of nano-TiO2 on photosynthetic characteristics of Ulmus elongata seedlings. Environ Pollut 176:63–70

    Article  CAS  PubMed  Google Scholar 

  • Ghafariyan MH, Malakouti MJ, Dadpour MR et al (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47:10645–10652

    CAS  PubMed  Google Scholar 

  • Ghodake G, Seo YD, Lee DS (2011) Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J Hazard Mater 186:952–955

    Article  CAS  PubMed  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM et al (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater. doi:10.1038/NMAT3890

    PubMed  Google Scholar 

  • Gomez-Garay A, Pintos B, Manzanera JA et al (2014) Uptake of CeO2 nanoparticles and its effect on growth of Medicago arborea in vitro plantlets. Biol Trace Elem Res. doi:10.1007/s12011-014-0089-2

    PubMed  Google Scholar 

  • Govorov AO, Carmeli I (2007) Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect. Nano Lett 7:620–625

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Kisseleva L, Sawa S et al (2004) A novel rice PR10 protein, RSOsPR10, specifically induced in roots by biotic and abiotic stresses, possibly via the jasmonic acid signaling pathway. Plant Cell Physiol 45:550–559

    Article  CAS  PubMed  Google Scholar 

  • Heckert EG, Karakoti AS, Seal S et al (2008) The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 29:2705–2709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hikosaka K, Terashima I (1996) Nitrogen partitioning among photosynthetic components and its consequence in sun and shade plants. Funct Ecol 10:335–343

    Article  Google Scholar 

  • Horie M, Nishio K, Kato H et al (2011) Cellular responses induced by cerium oxide nanoparticles: induction of intracellular calcium level and oxidative stress on culture cells. J Biochem 150:461–471

    Article  CAS  PubMed  Google Scholar 

  • Hoshino N, Kimura T, Yamaji A et al (1999) Damage to the cytoplasmic membrane of Escherichia coli by catechin-copper (II) complexes. Free Radic Biol Med 27:1245–1250

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Verrillo F, Renzone G et al (2011) Response to biotic and oxidative stress in Arabidopsis thaliana: analysis of variably phosphorylated proteins. J Proteomics 74:1934–1949

    Article  CAS  PubMed  Google Scholar 

  • Juknys R, Vitkauskaitė G, Račaitė M et al (2012) The impacts of heavy metals on oxidative stress and growth of spring barley. Cent Eur J Biol 7:299–306

    Article  CAS  Google Scholar 

  • Jung H, Gulis G, Gupta S et al (2010) Optical and electrical measurement of energy transfer between nanocrystalline quantum dots and photosystem I. J Phys Chem B 114:14544–14549

    Article  CAS  PubMed  Google Scholar 

  • Kabała K, Janicka-Russak M, Burzyński M et al (2008) Comparison of heavy metal effect on the proton pumps of plasma membrane and tonoplast in cucumber root cells. J Plant Physiol 165:278–288

    Article  PubMed  Google Scholar 

  • Karuppanapandian T, Moon J-C, Kim C et al (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci 5:709–725

    CAS  Google Scholar 

  • Kaveh R, Li Y-S, Ranjbar S et al (2013) Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol 47:10637–10644

    CAS  PubMed  Google Scholar 

  • Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15. doi:10.1007/s11051-013-1692-4

  • Kumari M, Khan SS, Pakrashi S et al (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190:613–621

    Article  CAS  PubMed  Google Scholar 

  • Lalau CM, Mohedano RA, Schmidt EC et al (2014) Toxicological effects of copper oxide nanoparticles on the growth rate, photosynthetic pigment content, and cell morphology of the duckweed Landoltia punctate. Protoplasma. doi:10.1007/s00709-014-0671-7

    PubMed  Google Scholar 

  • Lee WM, An YJ (2013) Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: no evidence of enhanced algal toxicity under UV pre-irradiation. Chemosphere 91:536–544

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Chung H, Kim S et al (2013) The genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat, Fagopyrum esculentum. Water Air Soil Pollut 224:1668–1678

    Article  Google Scholar 

  • Lei Z, Mingyu S, Chao L et al (2007a) Effects of nanoanatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination. Biol Trace Elem Res 119:68–76

    Article  PubMed  Google Scholar 

  • Lei Z, Mingyu S, Xiao W et al (2007b) Effects of nano-anatase on spectral characteristics and distribution of LCHII on the thylakoid membranes of spinach. Biol Trace Elem Res 120:273–283

    Article  PubMed  Google Scholar 

  • Lei Z, Mingyu S, Xiao W et al (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res 121:69–79

    Article  PubMed  Google Scholar 

  • Li GR, Hu T, Pan GL et al (2008) Morphology-function relationship of ZnO: polar planes, oxygen vacancies, and activity. J Phys Chem C 112:11859–11864

    Article  CAS  Google Scholar 

  • Lin S, Bhattacharya P, Rajapakse NC et al (2009) Effects of quantum dots adsorption on algal photosynthesis. J Phys Chem C 113:10962–10966

    Article  CAS  Google Scholar 

  • Liu Q, Zhao Y, Wan Y et al (2010) Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level. ACS Nano 4:5743–5748

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Zhang X, Zhao Y et al (2013) Fullerene-induced increase of glycosyl residue on living plant cell wall. Environ Sci Technol 47:7490–7498

    CAS  PubMed  Google Scholar 

  • Ma Y, Kuang L, He X et al (2010) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78:273–279

    Article  CAS  PubMed  Google Scholar 

  • Mallick K, Witcomb M, Scurrell (2006) Silver nanoparticle catalysed redox reaction: an electron relay effect. Mater Chem Phys 97:283–287

    Article  CAS  Google Scholar 

  • Matorin DN, Todorenko DA, Seifullina NKh et al (2013) Effect of silver nanoparticles on the parameters of chlorophyll fluorescence and P700 reaction in the green alga Chlamydomonas reinhardtii. Microbiology 82:809–814

    Article  CAS  Google Scholar 

  • Mclaren A, Valdes-Solis T, Li G et al (2009) Shape and size effects of ZnO nanocrystals on photocatalytic activity. J Am Chem Soc 131:12540–12541

    Article  CAS  PubMed  Google Scholar 

  • Mingyu S, Xiao W, Chao L et al (2007) Promotion of energy transfer and oxygen evolution in spinach photosystem II by nano-anatase TiO2. Biol Trace Elem Res 119:183–192

    Article  PubMed  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:86–96

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi R, Maali-Amiri R, Abbasi A (2013) Effect of TiO2 nanoparticles on chickpea response to cold stress. Biol Trace Elem Res. doi:10.1007/s12011-013-9631-x

    Google Scholar 

  • Nair PMG, Chung IM (2014) Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignification, and molecular level changes. Environ Sci Pollut Res. doi:10.1007/s11356-014-3210-3

    Google Scholar 

  • Nekrasova GF, Ushakova OS, Ermakov AE et al (2011) Effects of copper(II) ions and copper oxide nanoparticles on Elodea densa Planch. Russ J Ecol 42:458–463

    Article  CAS  Google Scholar 

  • Nieder JB, Bittl R, Brecht M (2010) Fluorescence studies into the effect of plasmonic interactions on protein function. Angew Chem Int Ed 49:10217–10220

    Article  CAS  Google Scholar 

  • Olejnik M, Krajnik B, Kowalska D et al (2013) Imaging of fluorescence enhancement in photosynthetic complexes coupled to silver nanowires. Appl Phys Lett 102:083703–083707

    Article  Google Scholar 

  • Ovecka M, Takac T (2014) Managing heavy metal toxicity stress in plants: biological and biotechnological tools. Biotechnol Adv 32:73–86

    Article  CAS  PubMed  Google Scholar 

  • Peralta-Videa JR, Zhao L, Lopez-Moreno ML et al (2011) Nanomaterials and the environment: a review for the biennium 2008–2010. J Hazard Mater 186:1–15

    Article  CAS  PubMed  Google Scholar 

  • Perreault F, Oukarroum A, Pirastru L et al (2010) Evaluation of copper oxide nanoparticles toxicity using chlorophyll a fluorescence imaging in Lemna gibba. J Bot. doi:10.1155/2010/763142

    Google Scholar 

  • Pradedova EV, Isheeva OD, Salyaev RK (2011) Classification of the antioxidant defense system as the ground for reasonable organization of experimental studies of the oxidative stress in plants. Russ J Plant Physiol 58:210–217

    Article  CAS  Google Scholar 

  • Pradhan S, Patra P, Das S et al (2013) Phtochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular, biochemical, and biophysical study. Environ Sci Technol 47:13122–13131

    Article  CAS  PubMed  Google Scholar 

  • Qi M, Liu Y, Li T (2013) Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res 156:323–328

    Article  CAS  PubMed  Google Scholar 

  • Rico CM, Hong J, Morales MI et al (2013a) Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47:5635–5642

    Article  CAS  PubMed  Google Scholar 

  • Rico CM, Morales MI, McCreary R et al (2013b) Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environ Sci Technol 47:14110–14118

    Article  CAS  PubMed  Google Scholar 

  • Saison C, Perreault JC, Daigle et al (2009) Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii. Aquat Toxicol 96:109–114

    Article  PubMed  Google Scholar 

  • Sharma P, Bhatt D, Zaidi MGH et al (2012a) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167:2225–2233

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS et al (2012b) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. doi:10.1155/2012/217037

    Google Scholar 

  • Shi J, Abid AD, Kennedy IM et al (2011) To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution. Environ Pollut 159:1277–1282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song G, Gao Y, Wu H et al (2012) Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environ Toxicol Chem 31:2147–2152

    Article  CAS  PubMed  Google Scholar 

  • Tan XM, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbón nanotubes on suspensión rice cells. Carbon 47:3479–3487

    Article  CAS  Google Scholar 

  • Tyagi H, Jha S, Sharma M et al (2014) Rice SAPs are responsive to multiple biotic stresses and overexpression of OsSAP1, an A20/AN1 zinc-finger protein, enhances the basal resistance against pathogen infection in tobacco. Plant Sci 225:68–76

    Article  CAS  PubMed  Google Scholar 

  • Ursache-Oprisan M, Focanici E, Creanga D et al (2011) Sunflower chlorophyll levels after magnetic nanoparticle supply. Afr J Biotechnol 10:7092–7098

    CAS  Google Scholar 

  • Viehweger K (2014) How plants cope with heavy metals. Bot Stud 55:35. doi:10.1186/1999-3110-55-35

    Article  Google Scholar 

  • Wang H, Kou X, Pei Z et al (2011) Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita maxima) plants. Nanotoxicology 5:30–42

    Article  PubMed  Google Scholar 

  • Wang Z, Xie X, Zhao J et al (2012) Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441

    Article  CAS  PubMed  Google Scholar 

  • Wei C, Zhang Y, Guo J et al (2010) Effects of silica nanoparticles on growth and photosynthetic pigment contents of Scenedesmus obliquus. J Environ Sci 22:155–160

    Article  CAS  Google Scholar 

  • Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42:6060–6093

    Article  CAS  PubMed  Google Scholar 

  • Xia T, Kovochich M, Liong M et al (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang F, Liu C, Gao F et al (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119:77–88

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation and the Environmental Protection Agency under Cooperative Agreement Number DBI-0830117. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or the Environmental Protection Agency. This work has not been subjected to EPA review and no official endorsement should be inferred. This work was supported by Grant 2G12MD007592 from the National Institutes on Minority Health and Health Disparities (NIMHD), a component of the National Institutes of Health (NIH). The authors also acknowledge the USDA grant number 2011-38422-30835 and the NSF Grant # CHE-0840525 J. L. Gardea-Torresdey acknowledges the Dudley family for the Endowed Research Professorship, the Academy of Applied Science/US Army Research Office, Research and Engineering Apprenticeship program (REAP) at UTEP, grant # W11NF-10-2-0076, sub-grant 13–7, and STARs programs of the University of Texas System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Gardea-Torresdey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rico, C.M., Peralta-Videa, J.R., Gardea-Torresdey, J.L. (2015). Chemistry, Biochemistry of Nanoparticles, and Their Role in Antioxidant Defense System in Plants. In: Siddiqui, M., Al-Whaibi, M., Mohammad, F. (eds) Nanotechnology and Plant Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-14502-0_1

Download citation

Publish with us

Policies and ethics