Skip to main content

Nanoparticles in Sustainable Agricultural Crop Production: Applications and Perspectives

  • Chapter
  • First Online:
Nanotechnology and Plant Sciences

Abstract

For the ever-increasing population of the world, an increasing demand for more and more food is required. To cope with this alarming situation, there is a dire need for sustainable agricultural production. In agriculture, management of optimum plant nutrients for sustainable crop production is the priority-based area of research. In this regard, much advancement in the area of plant nutrition has come forward and nano-nutrition is one the most interesting areas of research for sustainable agriculture production. Nanotechnology has revolutionized the world with tremendous advancements in many fields of science like engineering, biotechnology, analytical chemistry, and agriculture. Nano-nutrition is the application of nanotechnology for the provision of nano-sized nutrients for the crop production. Two sources of nanoparticles (NPs) have been used; biotic and abiotic. The abiotic form of nutrients or NPs is prepared from inorganic sources like salts but it is not safe because many of these are non-biodegradable. While the biotic ones are prepared from organic sources which are definitely the biodegradable and environment friendly. So, a few studies/attempts have been made in the field of nano-nutrition and a lot more are expected in the near future because this field of plant nutrition is sustainable and efficient one. Using nano-nutrition we can increase the efficiency of micro- as well as macronutrients of the plants. In this chapter, the focus has been made on the importance of nano-nutrition in the sustainable agricultural production and its future scenario so that it could be possible to apply this knowledge on a large scale without any concern regarding environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amine A, Mohammadi H, Bourais I, Palleschi G (2006) Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosens Bioelectron 21(8):1405–1423

    Article  CAS  PubMed  Google Scholar 

  • Aruoja V, Dubourguier H, Kasamets C, Kahru KA (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae, Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468

    Article  CAS  PubMed  Google Scholar 

  • Barik TK, Sahu B, Swain V (2008) Nanosilica-from medicine to pest control. Parasitol Res 103:253–258

    Article  CAS  PubMed  Google Scholar 

  • Booker NA, Cooney EL, Priestley AJ (1996) Ammonia removal from sewage using natural Australian zeolite. Water Sci Technol 34:230–237

    Google Scholar 

  • Brady NC, Weil RR (1996) The nature and properties of soils. Prentice-Hall Inc., Upper Saddle River

    Google Scholar 

  • Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Ventra MD, Garaj S, Hibbs A, Huang X, Jovanovich SB, Krstic PS, Lindsay S, Ling XS, Mastrangelo CH, Meller A, Oliver JS, Pershin YV, Ramsey JM, Riehn R, Soni GV, Tabard-Cossa V, Wanunu M, Wiggin M, Schloss JA (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26:1146–1153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brock DA, Douglas TE, Queller DC, Strassmann JE (2011) Primitive agriculture in a social amoeba. Nature 469:393–396

    Article  CAS  PubMed  Google Scholar 

  • Burggrafand AJ, Cot L (1996) Fundamentals of inorganic membrane science and technology. Elsevier Science, Amsterdam

    Google Scholar 

  • Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594

    Article  CAS  Google Scholar 

  • Corradini E, De Moura M, Mattoso L (2010) A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Express Polymer Lett 4(8):509–515

    Article  CAS  Google Scholar 

  • Cursino L, Li Y, Zaini PA, De La Fuente L, Hoch HC, Burr TJ (2009) Twitching motility and biofilm formation are associated with tonB1 in Xylella fastidiosa. FEMS Microbiol Lett 299:193–199

    Article  CAS  PubMed  Google Scholar 

  • Dana JD (1977) Manual of mineralogy. Wiley, New York

    Google Scholar 

  • De Cesare F, Di Mattia E, Pantalei S, Zampetti E, Vinciguerra V, Macagnano A (2011) Electronic nose technology to measure soil microbial activity and classify soil metabolic status. Nat Precedings. doi:10.1038/npre.2011.6364.1

    Google Scholar 

  • De A, Bose R, Kumar A, Mozumdar S (2014) Management of insect pests using nanotechnology: as modern approaches. In: Targeted delivery of pesticides using biodegradable polymeric nanoparticles. Springer, New Delhi, pp 29–33

    Google Scholar 

  • DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91–94

    Article  CAS  PubMed  Google Scholar 

  • Ding WK, Shah NP (2009) Effect of various encapsulating materials on the stability of probiotic bacteria. J Food Sci 74(2):M100–M107

    Article  CAS  PubMed  Google Scholar 

  • Ditta A (2012) How helpful is nanotechnology in agriculture? Adv Nat Sci: Nanosci Nanotechnol 3(3):033002

    Google Scholar 

  • Fakruddin Md, Hossain Z, Afroz H (2012) Prospects and applications of nanobiotechnology: a medical perspective. J Nanobiotechnol 10(1):1–8

    Article  Google Scholar 

  • Faria M, Rosemberg RS, Bomfeti CA, Monteiro DS, Barbosa F, Oliveira LC, Rodriguez M, Pereira MC, Rodrigues JL (2014) Arsenic removal from contaminated water by ultrafine δ-FeOOH adsorbents. Chem Eng J 237:47–54

    Article  CAS  Google Scholar 

  • Feizi H, Moghaddam PR, Shahtahmassebi N, Fotovat A (2012) Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol Trace Elem Res 146:101–106

    Article  CAS  PubMed  Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus mediated synthesis of silver nanoparticles and its activity against pathogenic fungi in combination of fluconazole. Nanomedicine 5(4):282–286

    Google Scholar 

  • Gao J, Sun S-P, Zhu W-P, Chung T-S (2014) Polyethyleneimine (PEI) cross-linked P84 nanofiltration (NF) hollow fiber membranes for Pb2+ removal. J Membr Sci 452:300–310

    Article  CAS  Google Scholar 

  • Genxing P, Shuhao T, Ge Y, Shanda Y (1991) Some agricultural properties of natural zeolite (in Chinese). Jiangsu J Agric Sci 7:31–36

    Google Scholar 

  • Ghodake G, Seo YD, Park DH, Lee DS (2010) Phytotoxicity of carbon nanotubes assessed by Brassica juncea and Phaseolus mungo. J Nanoelect Optoelect 5:157–160

    Article  CAS  Google Scholar 

  • Gibbons C, Rodriguez R, Tallon L, Sobsey M (2010) Evaluation of positively charged alumina nanofibre cartridge filters for the primary concentration of noroviruses, adenoviruses and male-specific coliphages from seawater. J Appl Microbiol 109(2):635–641

    CAS  PubMed  Google Scholar 

  • Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519:1252–1257

    Article  CAS  Google Scholar 

  • Gruère G, Narrod C, Abbott L (2011) Agriculture, food, and water nanotechnologies for the poor opportunities and constraints. Policy brief. International food policy research institute (IFPRI). Washington DC, 19 June 2011. http://www.ifpri.org/publication/agriculture-food-and-water-nanotechnologies-poor

  • Haidouti C (1997) Inactivation of mercury in contaminated soil using natural zeolites. Sci Total Environ 208:1–2

    Article  Google Scholar 

  • Han M, Gao X, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631–635

    Article  CAS  PubMed  Google Scholar 

  • Harrison BS, Atala A (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28:344–353

    Article  CAS  PubMed  Google Scholar 

  • Hillie T, Hlophe M (2007) Nanotechnology and the challenge of clean water. Nat Nanotechnol 2:663–664

    Article  CAS  PubMed  Google Scholar 

  • Holdren JP (2011) The national nanotechnology initiative strategic plan report at subcommittee on nanoscale science, engineering and technology of committee on technology. National science and technology council (NSTC), Arlington

    Google Scholar 

  • Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105:269–279

    Article  CAS  PubMed  Google Scholar 

  • Hossain MK, Ghosh SC, Boontongkong Y, Thanachayanont C, Dutta J (2005) Growth of zinc oxide nanowires and nanobelts for gas sensing applications. J Metastable Nanocryst Mater 23:27–30

    Article  CAS  Google Scholar 

  • Huang L, Dian-Qing L, Yan-Jun W, Min David G, Xue ED (2005) Controllable preparation of nano-MgO and investigation of its bactericidal properties. J Inorg Biochem 99:986–993

    Google Scholar 

  • Ingale AG, Chaudhari AN (2013) Biogenic synthesis of nanoparticles and potential applications: An eco-friendly approach. J Nanomed Nanotechol 4:165. doi:10.4172/2157-7439.1000165

    Article  Google Scholar 

  • Jha MK, Pandey AK, Pal D, Mohan A (2011) An energy-efficient multi-layer MAC (ML-MAC) protocol for wireless sensor networks. AEU-Int J Electron Commun 65(3):209–216

    Article  Google Scholar 

  • Johnston CT (2010) Probing the nanoscale architecture of clay minerals. Clay Miner 45:245–279

    Article  CAS  Google Scholar 

  • Juhel G, Batisse E, Hugues Q, Daly D, van Pelt FNAM, O’Halloran J, Jansen MAK (2011) Alumina nanoparticles enhance growth of Lemna minor. Aquat Toxicol 105:328–336

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6(3):2128–2135

    Article  CAS  PubMed  Google Scholar 

  • Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiol 40:53–58

    Article  CAS  Google Scholar 

  • Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84:151–157

    Article  CAS  Google Scholar 

  • Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank A, Brisset F, Carriere M (2012) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum): influence of diameter and crystal phase. Sci Total Environ 431:197–208

    Article  CAS  PubMed  Google Scholar 

  • Le Goff A, Holzinger M, Cosnier S (2011) Enzymatic biosensors based on SWCNT-conducting polymer electrodes. Analyst 136(7):1279–1287

    Article  PubMed  Google Scholar 

  • Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29(3):669–675

    Article  CAS  PubMed  Google Scholar 

  • Lei Z, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, Hao H, Xiaoqing L, Fashui H (2008) Antioxidant stress is promoted by nanoanatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res 121:69–79

    Article  PubMed  Google Scholar 

  • Li Y, Cu YT, Luo D (2005) Multiplexed detection of pathogen DNA with DNA based fluorescence nanobarcodes. Nat Biotechnol 23:885–889

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Wen LX, Li ZZ, Yu W, Sun HY, Chen JF (2006a) Porous hollow silica nanoparticles as controlled delivery system for water soluble pesticide. Mat Res Bull 41:2268–2275

    Article  CAS  Google Scholar 

  • Liu X, Feng Z, Zhang S, Zhang J, Xiao Q, Wang Y (2006b) Preparation and testing of cementing nano-subnano composites of slow- or controlled release of fertilizers. Sci Agric Sin 39:1598–1604

    CAS  Google Scholar 

  • Liu D, Chen W, Wei J, Li X, Wang Z, Jiang X (2012a) A highly sensitive, dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides. Anal Chem 84(9):4185–4191. doi:10.1021/ac300545p

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Liu H, Yuan Z, Wei D, Ye Y (2012) Evaluation of antioxidant activity of chrysanthemum extracts and tea beverages by gold nanoparticles-based assay. Colloids Surf B 92 (0):348-352. doi:http://dx.doi.org/10.1016/j.colsurfb.2011.12.007

  • Lu C, Zhang C, Wen J, Wu G, Tao M (2001) Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21(3):168–171

    Google Scholar 

  • Lu G, Krishnamachari B, Raghavendra CS (2004) An adaptive energy-efficient and low-latency MAC for data gathering in wireless sensor networks. In: parallel and distributed processing symposium, 26–30 April 2004, p 224. doi:10.1109/IPDPS.2004.1303264

  • Mathew AP, Laborie M-P, Oksman K (2009) Cross-linked chitosan-chitin whiskers nanocomposites with improved permeation selectivity and pH stability. Biomacromolecules 10(6):1627–1632

    Article  CAS  PubMed  Google Scholar 

  • McLamore ES, Diggs A, CalvoMarzal P, Shi J, Blakeslee JJ, Peer WA, Murphy AS, Porterfield DM (2010) Noninvasive quantification of endogenous root auxin transport using an integrated flux microsensor technique. Plant J 63:1004–1016

    Article  CAS  PubMed  Google Scholar 

  • Mondal A, Basu R, Das S, Nandy P (2011) Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J Nanopart Res 13(10):4519–4528

    Article  CAS  Google Scholar 

  • Murphy K (2008) Nanotechnology: agriculture’s next “industrial” revolution. Spring, Williston (Financial partner, yankee farm credit, ACA), pp 3–5

    Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Nath N, Chilkoti A (2004) Label free colorimetric biosensing using nanoparticles. J Fluoresc 14(4):377–389. doi:10.1023/B:JOFL.0000031819.45448.dc

    Article  CAS  PubMed  Google Scholar 

  • Navrotsky A, Petrovic I, Hu Y, Chen C-y, Davis ME (1995) Energetics of microporous materials. J Non-Cryst Solids 192:474–477

    Google Scholar 

  • Ngô C, Van de Voorde MH (2014) Nanotechnologies in agriculture and food. In: Nanotechnology in a nutshell. Springer, New York, pp 233–247

    Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? a study of Gram negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347

    Article  CAS  PubMed  Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22:295–302

    Article  Google Scholar 

  • Patel PD (2002) (Bio) sensors for measurement of analytes implicated in food safety: a review. Trends Anal Chem 21:96–115

    Article  CAS  Google Scholar 

  • Pérez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65:540–545

    Article  PubMed  Google Scholar 

  • Pirtola L, Hultman B, Lowen M (1998) Effects of detergent zeolite in a nitrogen removal activated sludge process. Water Sci Technol 38:189–196

    Article  Google Scholar 

  • Prasad R, Swamy VS (2013) Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini. J Nanopart. http://dx.doi.org/10.1155/2013/431218

  • Prasad KS, Pathak D, Patel A, Dalwadi P, Prasad R, Patel P, Kaliaperumal Selvaraj K (2011) Biogenic synthesis of silver nanoparticles using Nicotiana tobaccum leaf extract and study of their antibacterial effect. Afr J Biotechnol 9(54):8122–8130

    Google Scholar 

  • Prasad R, Bagde US, Varma A (2012a) Intellectual property rights and agricultural biotechnology: an overview. Afr J Biotechnol 11(73):13746–13752

    Article  Google Scholar 

  • Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012b) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35(6):905–927

    Article  CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2(1):48–57

    Google Scholar 

  • Ramesh K, Biswas AK, Somasundaram J, Rao AS (2010) Nanoporous zeolites in farming: current status and issues ahead. Curr Sci 99(6):760–764

    Google Scholar 

  • Sand LB, Mumpton FA (1978) Natural zeolites: occurrence, properties and use. Pergamon Press, New York

    Google Scholar 

  • Santoso D, Lefroy RDB, Blair GJ (1995) Sulfur and phosphorus dynamics in an acid soil/crop system. Aust J Soil Res 33:113–124

    Article  CAS  Google Scholar 

  • Sassolas A, Blum LJ, Leca-Bouvier BD (2012) Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv 30(3):489–511

    Article  CAS  PubMed  Google Scholar 

  • Sawant R, Hurley J, Salmaso S, Kale A, Tolcheva E, Levchenko T, Torchilin V (2006) “SMART” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconj Chem 17(4):943–949

    Article  CAS  Google Scholar 

  • Scott NR (2007) Nanotechnology opportunities in agriculture and food systems. Biological and environmental engineering, Cornell university NSF nanoscale science and engineering grantees conference, Arlington, 5 Dec 2007

    Google Scholar 

  • Scott N, Chen H (2003a) Nanoscale science and engineering for agriculture and food systems. A report submitted to cooperative state research, education and extension service, USDA, National Planning Workshop, Washington

    Google Scholar 

  • Scott NR, Chen H (2003b) Nanoscale science and engineering or agriculture and food systems. In: Roadmap report of national planning workshop 2002. Washington DC, 18–19 Nov 2002. http://www.nseafs.cornell.edu/web.roadmap.pdf

  • Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. Int J Sociol Food Agric 15:22–44

    Google Scholar 

  • Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:143–148

    Article  CAS  Google Scholar 

  • Shah MA, Towkeer A (2010) Principles of nanosciences and nanotechnology. Narosa Publishing House, New Delhi

    Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J Biol Sci 21:13–17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Su X-L, Li Y (2004) Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli o157:h7. Anal Chem 76(16):4806–4810

    Article  CAS  PubMed  Google Scholar 

  • Sugunan A, Warad H, Thanachayanont C, Dutta J, Hofmann H (2005) Zinc oxide nanowires on non-epitaxial substrates from colloidal processing, for gas sensing applications. In: Nanostructured and advanced materials for applications in sensor, optoelectronic and photovoltaic technology. Springer, Sozopol, pp 335–338

    Google Scholar 

  • Suman PR, Jain VK, Varma A (2010) Role of nanomaterials in symbiotic fungus growth enhancement. Curr Sci 99:1189–1191

    Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R, Prabu P, Rajendran V, Kannan N (2012a) Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. J Nanopart Res 14:1294–1296

    Article  Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N (2012b) Silica nanoparticles for increased silica availability in maize (Zea mays L.) seeds under hydroponic conditions. Curr Nanosci 8:1–7

    Article  Google Scholar 

  • Swamy VS, Prasad R (2012) Green synthesis of silver nanoparticles from the leaf extract of Santalum album and its antimicrobial activity. J Optoelectron Biomed Mater 4(3):53–59

    Google Scholar 

  • Tarafdar JC, Sharma S, Raliya R (2013) Nanotechnology: interdisciplinary science of applications. Afr J Biotechnol 12(3):219–226

    Google Scholar 

  • Teodoro S, Micaela B, David KW (2010) Novel use of nano-structured alumina as an insecticide. Pest Manag Sci 66(6):577–579

    Google Scholar 

  • Torney F (2009) Nanoparticle mediated plant transformation. Emerging technologies in plant science research. Interdepartmental plant physiology major fall seminar series. Physics 696

    Google Scholar 

  • Torney F, Trewyn BG, Lin VS, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  CAS  PubMed  Google Scholar 

  • Tripathi S, Sonkar SK, Sarkar S (2011) Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 3:1176–1181

    Article  CAS  PubMed  Google Scholar 

  • Ulrichs C, Mewis I, Goswami A (2005) Crop diversification aiming nutritional security in West Bengal—biotechnology of stinging capsules in nature’s water-blooms. Ann Tech Issue State Agric Technol Servi Assoc. ISSN:1–18

    Google Scholar 

  • Van Dam T, Langendoen K (2003) An adaptive energy-efficient MAC protocol for wireless sensor networks. In: Proceedings of the 1st international conference on embedded networked sensor systems. ACM, Los Angeles pp 171–180

    Google Scholar 

  • Vidhyalakshmi R, Bhakyaraj R, Subhasree RS (2009) Encapsulation the future of probiotics—a review. Adv Biol Res 3(3–4):96–103

    CAS  Google Scholar 

  • Wang L, Li Z, Zhang G, Dong J, Eastoe J (2007) Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interface Sci 314:230–235

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Han H, Liu X, Gu X, Chen K, Lu D (2012) Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. J Nanopart Res 14:841. doi:10.1007/s11051-012-0841-5

    Article  Google Scholar 

  • Wilson MA, Tran NH, Milev AS, Kannangara G, Volk H, Lu G (2008) Nanomaterials in soils. Geoderma 146(1):291–302

    Article  CAS  Google Scholar 

  • Xiubin H, Zhanbin H (2001) Zeolite application for enhancing water infiltration and retention in loess soil. Resour Conserv Recycl 34(1):45–52

    Article  Google Scholar 

  • Yamanka M, Hara K, Kudo J (2005) Bactericidal actions of silver ions solution on Escherichia coli studying by energy filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 71:7589–7593

    Article  Google Scholar 

  • Yang L, Watts D (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Hong F, You W, Liu C, Gao F, Wu C, Yang P (2006) Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110:179–190

    Article  CAS  PubMed  Google Scholar 

  • Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57(21):10156–10162

    Article  CAS  PubMed  Google Scholar 

  • Yardley BW (2000) Citation analysis: democracy on the rocks. Nature 403 (6768):373–373

    Google Scholar 

  • Yavuz CT, Mayo JT, Yu WW, Prakash A, Falkner JC, Yean S, Cong L, Shipley HJ, Kan A, Tomson M, Natelson D, Colvin VL (2006) Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314:964–967

    Article  PubMed  Google Scholar 

  • Young KJ (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93(10):1037–1104

    Article  Google Scholar 

  • Zaini PA, De La Fuente L, Hoch HC, Burr TJ (2009) Grapevine xylem sap enhances biofilm development by Xylella fastidiosa. FEMS Microbiol Lett 295:129–134

    Article  CAS  PubMed  Google Scholar 

  • Zanello LP, Zhao B, Hu H, Haddon RC (2006) Bone cell proliferation on carbon nanotubes. Nano Lett 6:562–567

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Hong F, Lv S, Liu C (2004) Effect of Nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 101:1–9

    Article  Google Scholar 

  • Zhu W-P, Sun S-P, Gao J, Fu F-J, Chung T-S (2014) Dual-layer polybenzimidazole/polyethersulfone (pbi/pes) nanofiltration (nf) hollow fiber membranes for heavy metals removal from wastewater. J Membr Sci 456:117–127

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allah Ditta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ditta, A., Arshad, M., Ibrahim, M. (2015). Nanoparticles in Sustainable Agricultural Crop Production: Applications and Perspectives. In: Siddiqui, M., Al-Whaibi, M., Mohammad, F. (eds) Nanotechnology and Plant Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-14502-0_4

Download citation

Publish with us

Policies and ethics