Skip to main content

2015 | OriginalPaper | Buchkapitel

Grasping and Manipulation of Unknown Objects Based on Visual and Tactile Feedback

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The sense of touch allows humans and higher animals to perform coordinated and efficient interactions within their environment. Recently, tactile sensor arrays providing high force, spatial, and temporal resolution became available for robotics, which allows us to consider new control strategies to exploit this important and valuable sensory channel for grasping and manipulation tasks. Successful dexterous manipulation strongly depends on tight feedback loops integrating proprioceptive, visual, and tactile feedback. We introduce a framework for tactile servoing that can realize specific tactile interaction patterns, for example to establish and maintain contact (grasping) or to explore and manipulate objects. We demonstrate and evaluate the capabilities of the proposed control framework in a series of preliminary experiments employing a 16 \(\times \) 16 tactile sensor array attached to a Kuka LWR arm as a large fingertip.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The sensor’s sensitivity and force range can be adjusted to the task. Here, we have chosen the characteristics to provide a linear range from 0.1–1 kPa.
 
2
The steady state errors and standard deviations are computed from a time series of 20 s duration starting after convergence (response time). All values are obtained by averaging over 20 trials.
 
Literatur
1.
Zurück zum Zitat Jenmalm P, Johansson RS (1997) Visual and somatosensory information about object shape control manipulative fingertip forces. J Neurosci 17:4486–4499 Jenmalm P, Johansson RS (1997) Visual and somatosensory information about object shape control manipulative fingertip forces. J Neurosci 17:4486–4499
2.
Zurück zum Zitat Johansson RS, Westling G (1984) Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res 56:550–564CrossRef Johansson RS, Westling G (1984) Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res 56:550–564CrossRef
3.
Zurück zum Zitat Steffen JF, Elbrechter C, Haschke R, Ritter H (2010) Bio-inspired motion strategies for a bimanual manipulation task. In: Proceedings of international conference on humanoid robots Steffen JF, Elbrechter C, Haschke R, Ritter H (2010) Bio-inspired motion strategies for a bimanual manipulation task. In: Proceedings of international conference on humanoid robots
4.
Zurück zum Zitat Dang H, Weisz J, Allen PK (2011) Blind grasping: stable robotic grasping using tactile feedback and hand kinematics. In: Proceedings of ICRA Dang H, Weisz J, Allen PK (2011) Blind grasping: stable robotic grasping using tactile feedback and hand kinematics. In: Proceedings of ICRA
5.
Zurück zum Zitat Ho V, Nagatani T, Noda A, Hirai Sh (2012) What can be inferred from a tactile arrayed sensor in autonomous in-hand manipulation? In: Proceedings of CASE, p 461 Ho V, Nagatani T, Noda A, Hirai Sh (2012) What can be inferred from a tactile arrayed sensor in autonomous in-hand manipulation? In: Proceedings of CASE, p 461
6.
Zurück zum Zitat Schürmann C, Kõiva R, Haschke R (2011) A modular high-speed tactile sensor for human manipulation research. In: World haptics conference Schürmann C, Kõiva R, Haschke R (2011) A modular high-speed tactile sensor for human manipulation research. In: World haptics conference
7.
Zurück zum Zitat Li Q, Haschke R, Bolder B, Ritter H (2012) Grasp point optimization by online exploration of unknown object surface. In: Proceedings of international conference on humanoid robots Li Q, Haschke R, Bolder B, Ritter H (2012) Grasp point optimization by online exploration of unknown object surface. In: Proceedings of international conference on humanoid robots
8.
Zurück zum Zitat Pezzementi Z, Plaku E, Reyda C, Hager GD (2011) Tactile-object recognition from appearance information. Trans Robot 27(3):473–487CrossRef Pezzementi Z, Plaku E, Reyda C, Hager GD (2011) Tactile-object recognition from appearance information. Trans Robot 27(3):473–487CrossRef
9.
Zurück zum Zitat Hart S, Sen S, Ou S, Grupen R (2009) The control basis API—a layered software architecture for autonomous robot learning. In: 2009 workshop on software development and integration in robotics at ICRA Hart S, Sen S, Ou S, Grupen R (2009) The control basis API—a layered software architecture for autonomous robot learning. In: 2009 workshop on software development and integration in robotics at ICRA
10.
Zurück zum Zitat Huber M (2000) A hybrid architecture for adaptive robot control. PhD thesis, University of Massachusetts Huber M (2000) A hybrid architecture for adaptive robot control. PhD thesis, University of Massachusetts
11.
Zurück zum Zitat León B, Ulbrich S, Diankov R, Puche G, Przybylski M, Morales A, Asfour T, Moisio S, Bohg J, Kuffner J (2010) OpenGRASP: a toolkit for robot grasping simulation. In: Proceedings of SIMPAR. Springer, Darmstadt, pp 109–120 León B, Ulbrich S, Diankov R, Puche G, Przybylski M, Morales A, Asfour T, Moisio S, Bohg J, Kuffner J (2010) OpenGRASP: a toolkit for robot grasping simulation. In: Proceedings of SIMPAR. Springer, Darmstadt, pp 109–120
12.
Zurück zum Zitat Gienger M, Toussaint M, Goerick C (2010) Whole-body motion planning—building blocks for intelligent systems. In: Harada K, Yoshida E, Yokoi K (eds) Motion planning for humanoid robots. Springer, London, pp 67–98CrossRef Gienger M, Toussaint M, Goerick C (2010) Whole-body motion planning—building blocks for intelligent systems. In: Harada K, Yoshida E, Yokoi K (eds) Motion planning for humanoid robots. Springer, London, pp 67–98CrossRef
13.
Zurück zum Zitat Gienger M, Janßen H, Goerick C (2006) Exploiting task intervals for whole body robot control. In: Proceedings of IROS, pp 2484–2490 Gienger M, Janßen H, Goerick C (2006) Exploiting task intervals for whole body robot control. In: Proceedings of IROS, pp 2484–2490
14.
Zurück zum Zitat Platt R, Fagg AH, Grupen RA (2010) Null-space grasp control: theory and experiments. IEEE Trans Robot 26(2):282–295CrossRef Platt R, Fagg AH, Grupen RA (2010) Null-space grasp control: theory and experiments. IEEE Trans Robot 26(2):282–295CrossRef
15.
Zurück zum Zitat Liegeois A (1977) Automatic supervisory control of configuration and behavior of multibody mechanisms. IEEE Trans Syst, Man Cybern 7(12):861–871 Liegeois A (1977) Automatic supervisory control of configuration and behavior of multibody mechanisms. IEEE Trans Syst, Man Cybern 7(12):861–871
16.
Zurück zum Zitat Sugiura H, Gienger M, Jannsen H, Goerick C (2010) Reactive self collision avoidance with dynamic task prioritization for humanoid robots. Int J Humanoid Robot 7(01):31–54CrossRef Sugiura H, Gienger M, Jannsen H, Goerick C (2010) Reactive self collision avoidance with dynamic task prioritization for humanoid robots. Int J Humanoid Robot 7(01):31–54CrossRef
17.
Zurück zum Zitat Behnisch M, Haschke R, Ritter H, Gienger M (2011) Deformable trees—exploiting local obstacle avoidance. In: Proceedings of international conference on humanoid robots Behnisch M, Haschke R, Ritter H, Gienger M (2011) Deformable trees—exploiting local obstacle avoidance. In: Proceedings of international conference on humanoid robots
18.
Zurück zum Zitat Catalano MG, Grioli G, Farnioli E, Serio A, Piazza A, Bicchi C (2014) Adaptive synergies for the design and control of the Pisa/IIT SoftHand. Int J Robot Res 33(5):768–782CrossRef Catalano MG, Grioli G, Farnioli E, Serio A, Piazza A, Bicchi C (2014) Adaptive synergies for the design and control of the Pisa/IIT SoftHand. Int J Robot Res 33(5):768–782CrossRef
19.
Zurück zum Zitat Odhner LU, Ma RR, Dollar AM (2013) Open-loop precision grasping with underactuated hands inspired by a human manipulation strategy. IEEE Trans Autom Sci Eng 10(3):625–633CrossRef Odhner LU, Ma RR, Dollar AM (2013) Open-loop precision grasping with underactuated hands inspired by a human manipulation strategy. IEEE Trans Autom Sci Eng 10(3):625–633CrossRef
20.
Zurück zum Zitat Cutkosky M, Howe RD (1990) Human grasp choice and robotic grasp analysis. In: Venkataraman ST, Iberall T (eds) Dextrous robot hands. Springer, New York Cutkosky M, Howe RD (1990) Human grasp choice and robotic grasp analysis. In: Venkataraman ST, Iberall T (eds) Dextrous robot hands. Springer, New York
21.
Zurück zum Zitat Ückermann A, Haschke R, Ritter H (2013) Realtime 3D segmentation for human-robot interaction. In: Proceedings of IROS Ückermann A, Haschke R, Ritter H (2013) Realtime 3D segmentation for human-robot interaction. In: Proceedings of IROS
23.
Zurück zum Zitat Schöpfer M, Schmidt F, Pardowitz M, Ritter H (2010) Open source real-time control software for the Kuka light weight robot. In: Proceedings of WCICA, pp 444–449 Schöpfer M, Schmidt F, Pardowitz M, Ritter H (2010) Open source real-time control software for the Kuka light weight robot. In: Proceedings of WCICA, pp 444–449
24.
Zurück zum Zitat Dahiya RS, Metta G, Valle M, Sandini G (2010) Tactile sensing: from humans to humanoids. IEEE Trans Robot 26(1):1–20CrossRef Dahiya RS, Metta G, Valle M, Sandini G (2010) Tactile sensing: from humans to humanoids. IEEE Trans Robot 26(1):1–20CrossRef
25.
Zurück zum Zitat Wettels N, Santos VJ, Johansson RS, Loeb GE (2008) Biomimetic tactile sensor array. Adv Robot 22(8):829–849CrossRef Wettels N, Santos VJ, Johansson RS, Loeb GE (2008) Biomimetic tactile sensor array. Adv Robot 22(8):829–849CrossRef
26.
Zurück zum Zitat Fishel JA, Loeb GE (2012) Sensing tactile microvibrations with the BioTac— comparison with human sensitivity. In: International conference on biomedical robotics and biomechatronics (BioRob), pp 1122–1127 Fishel JA, Loeb GE (2012) Sensing tactile microvibrations with the BioTac— comparison with human sensitivity. In: International conference on biomedical robotics and biomechatronics (BioRob), pp 1122–1127
27.
Zurück zum Zitat Xu D, Loeb GE, Fishel JA (2013) Tactile identification of objects using Bayesian exploration. In: Proceedings of ICRA, pp 3056–3061 Xu D, Loeb GE, Fishel JA (2013) Tactile identification of objects using Bayesian exploration. In: Proceedings of ICRA, pp 3056–3061
28.
Zurück zum Zitat Schürmann C, Schöpfer M, Haschke R, Ritter H (2012) A high-speed tactile sensor for slip detection. In: Prassler E, Burgard W, Handmann U, Haschke R, Hägele M, Lawitzky G, Nebel B, Nowak W, Plöger P, Reiser U, Zöllner M (eds) Towards service robots for everyday environments, vol 76. Springer, New York, pp 403–415. Video: www.youtube.com/watch?v=mSq8e4PU90s Schürmann C, Schöpfer M, Haschke R, Ritter H (2012) A high-speed tactile sensor for slip detection. In: Prassler E, Burgard W, Handmann U, Haschke R, Hägele M, Lawitzky G, Nebel B, Nowak W, Plöger P, Reiser U, Zöllner M (eds) Towards service robots for everyday environments, vol 76. Springer, New York, pp 403–415. Video: www.​youtube.​com/​watch?​v=​mSq8e4PU90s
30.
Zurück zum Zitat Kõiva R, Zenker M, Schürmann C, Haschke R, Ritter H (2013). A highly sensitive 3D-shaped tactile sensor. In: International conference on advanced intelligent mechatronics (AIM) Kõiva R, Zenker M, Schürmann C, Haschke R, Ritter H (2013). A highly sensitive 3D-shaped tactile sensor. In: International conference on advanced intelligent mechatronics (AIM)
31.
Zurück zum Zitat Büscher G, Kõiva R, Schürmann C, Haschke R, Ritter H (2012) Tactile dataglove with fabric-based sensors. In: Proceedings of international conference on humanoid robots Büscher G, Kõiva R, Schürmann C, Haschke R, Ritter H (2012) Tactile dataglove with fabric-based sensors. In: Proceedings of international conference on humanoid robots
32.
Zurück zum Zitat Maycock J, Essig K, Haschke R, Schack T, Ritter H (2011) Towards an understanding of grasping using a multi-sensing approach. In: Proceedings of ICRA, pp 1–8 Maycock J, Essig K, Haschke R, Schack T, Ritter H (2011) Towards an understanding of grasping using a multi-sensing approach. In: Proceedings of ICRA, pp 1–8
33.
Zurück zum Zitat Roa M, Kõiva R, Castellini C (2012) Experimental evaluation of human grasps using a sensorized object. In: International conference on biomedical robotics and biomechatronics (BioRob) Roa M, Kõiva R, Castellini C (2012) Experimental evaluation of human grasps using a sensorized object. In: International conference on biomedical robotics and biomechatronics (BioRob)
34.
Zurück zum Zitat Chen N, Zhang H, Rink R (1995) Edge tracking using tactile servo. In: Proceedings of IROS, vol 2. August 1995, pp 84–89 Chen N, Zhang H, Rink R (1995) Edge tracking using tactile servo. In: Proceedings of IROS, vol 2. August 1995, pp 84–89
35.
Zurück zum Zitat Martinez-Hernandez U, Lepora NF, Barron-Gonzalez H, Dodd TJ, Prescott TJ (2012) Towards contour following exploration based on tactile sensing with the iCub fingertip. In: Herrmann G, Studley M, Pearson M, Conn A, Melhuish C, Witkowski M, Kim J-H, Vadakkepat P (eds) Advances in autonomous robotics. Lecture notes in computer science, vol 7429. Springer, Berlin, pp 459–460 Martinez-Hernandez U, Lepora NF, Barron-Gonzalez H, Dodd TJ, Prescott TJ (2012) Towards contour following exploration based on tactile sensing with the iCub fingertip. In: Herrmann G, Studley M, Pearson M, Conn A, Melhuish C, Witkowski M, Kim J-H, Vadakkepat P (eds) Advances in autonomous robotics. Lecture notes in computer science, vol 7429. Springer, Berlin, pp 459–460
36.
Zurück zum Zitat Schmitz A, Maiolino P, Maggiali M, Natale L, Cannata G, Metta G (2011) Methods and technologies for the implementation of large-scale robot tactile sensors. Trans Robot 27(3):389–400CrossRef Schmitz A, Maiolino P, Maggiali M, Natale L, Cannata G, Metta G (2011) Methods and technologies for the implementation of large-scale robot tactile sensors. Trans Robot 27(3):389–400CrossRef
37.
Zurück zum Zitat Wettels N, Loeb GE (2011) Haptic feature extraction from a biomimetic tactile sensor: force, contact location and curvature. In: Proceedings of ROBIO, pp 2471–2478 Wettels N, Loeb GE (2011) Haptic feature extraction from a biomimetic tactile sensor: force, contact location and curvature. In: Proceedings of ROBIO, pp 2471–2478
38.
Zurück zum Zitat Suzuki K, Horiba I, Sugie N (2003) Linear-time connected-component labeling based on sequential local operations. Comput Vis Image Underst 89(1):1–23CrossRefMATH Suzuki K, Horiba I, Sugie N (2003) Linear-time connected-component labeling based on sequential local operations. Comput Vis Image Underst 89(1):1–23CrossRefMATH
39.
Zurück zum Zitat Duda RO, Hart PE (1972) Use of the Hough transformation to detect lines and curves in pictures. Commun ACM 15(1):11–15CrossRefMATH Duda RO, Hart PE (1972) Use of the Hough transformation to detect lines and curves in pictures. Commun ACM 15(1):11–15CrossRefMATH
41.
Zurück zum Zitat Schöpfer M, Ritter H, Heidemann G (2007) Acquisition and application of a tactile database. In: Proceedings of ICRA, pp 1517–1522 Schöpfer M, Ritter H, Heidemann G (2007) Acquisition and application of a tactile database. In: Proceedings of ICRA, pp 1517–1522
42.
Zurück zum Zitat Meier M, Schöpfer M, Haschke R, Ritter H (2011) A probabilistic approach to tactile shape reconstruction. Trans Robot 27(3):630–635CrossRef Meier M, Schöpfer M, Haschke R, Ritter H (2011) A probabilistic approach to tactile shape reconstruction. Trans Robot 27(3):630–635CrossRef
Metadaten
Titel
Grasping and Manipulation of Unknown Objects Based on Visual and Tactile Feedback
verfasst von
Robert Haschke
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-14705-5_4

Neuer Inhalt