Skip to main content

Electrochemical Fabrication of Graphene-Based Nanomaterials

  • Living reference work entry
  • First Online:

Abstract

Its unique nanostructure and extraordinary thermal, mechanical, and electrical properties such as good biocompatibility, high-surface area, excellent electrical conductivity, electron mobility at room temperature, and flexibility have made graphene a popular research subject in the recent past in many fields such as batteries, supercapacitors, fuel cells, and sensors, to name only a few.

Since the micromechanical cleavage of graphite, various deposition approaches were followed for the development of graphene-based devices. Nevertheless, all of these approaches have their own advantages and disadvantages. Among the deposition methods, electrochemical approach is potentially the simplest and least expensive method; it is a fast and green approach, suitable for mass production and for large-area applications.

This chapter proposes to review on the electrochemical synthesis of graphene as an alternative to a more convenient, efficient, and greener route to fabricate graphene-based nanomaterials with lower oxygen content.

This is a preview of subscription content, log in via an institution.

References

  1. Carrera-Cerritos R, Baglio V, Aricò AS, Ledesma-Garcìa J, Sgroi MF, Pullini D, Pruna AJ, Mataix DB, Fuentes-Ramìrez R, Arriaga LG (2014) Improved Pd electro-catalysis for oxygen reduction reaction in direct methanol fuel cell by reduced graphene oxide. Appl Catal B Environ 144:554–560

    Article  CAS  Google Scholar 

  2. Wang G, Yang J, Park J, Gou XL, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112:8192

    Article  CAS  Google Scholar 

  3. Lomeda JR, Doyle CD, Kosynkin DV, Hwang WF, Tour JM (2008) Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J Am Chem Soc 130:16201

    Article  CAS  Google Scholar 

  4. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Ruoff RS, Nguyen ST (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558

    Article  CAS  Google Scholar 

  5. Wu SX, Yin ZY, He QY, Huang X, Zhou XZ, Zhang H (2010) Electrochemical deposition of semiconductor oxides on reduced graphene oxide-based flexible, transparent and conductive electrodes. J Phys Chem C 114:1816

    Article  Google Scholar 

  6. Li D, Muller MB, Gilje S, Kaner RB, Wallance GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101

    Article  CAS  Google Scholar 

  7. Pruna A, Pullini D, Busquets D (2013) Influence of synthesis conditions on properties of green-reduced graphene oxide. J Nanopart Res 15:1605

    Article  Google Scholar 

  8. Pumera M, Ambrosi A, Chng ELK, Poh HL (2010) Graphene for electrochemical sensing and biosensing. Trends Anal Chem 29:954–965

    Article  CAS  Google Scholar 

  9. Zhu C, Guo S, Fang Y, Han L, Wang E, Dong S (2011) One-step electrochemical approach to the synthesis of graphene/MnO2 nanowall hybrids. Nano Res 4:648–657

    Article  CAS  Google Scholar 

  10. Guo HL, Wang XF, Qian QY, Wang FB, Xia XH (2009) A green approach to the synthesis of graphene nanosheets. ACS Nano 3:2653

    Article  CAS  Google Scholar 

  11. Wang Z, Zhang J, Chen P, Zhou X, Yang Y, Wu S, Niu L, Han Y, Wang L, Chen P, Boey F, Zhang Q, Liedberg B, Zhang H (2011) Label-free, electrochemical detection of methicillin-resistant staphylococcus aureus DNA with reduced graphene oxide-modified electrodes. Biosens Bioelectron 26:3881

    Article  CAS  Google Scholar 

  12. Zhou M, Wang Y, Zhai YM, Zhai JF, Ren W, Wang FA, Dong SJ (2009) Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem Eur J 15:6116

    Article  CAS  Google Scholar 

  13. Alanyalıoğlu M, Segura JJ, Oró-Solè JO, Casan-Pastor N (2012) The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes. Carbon 50:142–152

    Article  Google Scholar 

  14. Kakaei K (2013) One-pot electrochemical synthesis of graphene by the exfoliation of graphite powder in sodium dodecyl sulfate and its decoration with platinum nanoparticles for methanol oxidation. Carbon 51:195–201

    Article  CAS  Google Scholar 

  15. Ting SW, Periasamy AP, Chen SM, Saraswathi R (2011) Direct electrochemistry of catalase immobilized at electrochemically reduced graphene oxide modified electrode for amperometric H2O2 biosensor. Int J Electrochem Sci 6:4438–4453

    CAS  Google Scholar 

  16. Peng XY, Liu XX, Diamond D, Lau KT (2011) Synthesis of electrochemically-reduced graphene oxide film with controllable size and thickness and its use in supercapacitor. Carbon 49:3488–3496

    Article  CAS  Google Scholar 

  17. Tang Y, Wu N, Luo S, Liu C, Wang K, Chen L (2012) One-step electrodeposition to layer-by-layer graphene–conducting-polymer hybrid films. Macromol Rapid Commun 33:1780–1786

    Article  CAS  Google Scholar 

  18. Zhang H, Zhang X, Zhang D, Sun X, Lin H, Wang C, Ma Y (2013) One-step electrophoretic deposition of reduced graphene oxide and Ni(OH)2 composite films for controlled syntheses supercapacitor electrodes. J Phys Chem B 117:1616–1627

    Article  CAS  Google Scholar 

  19. Bittolo Bon S, Valentini L, Kenny JM, Peponi L, Verdejo R, Lopez-Manchado MA (2010) Electrodeposition of transparent and conducting graphene/carbon nanotube thin films. Phys Status Solidi A 207:2461–2466

    Article  CAS  Google Scholar 

  20. Su CY, Lu AY, Xu Y, Chen FR, Khlobystov AN, Li LJ (2011) High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5:2332–2339

    Article  CAS  Google Scholar 

  21. Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J (2008) One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Funct Mater 18:1518–1525

    Article  CAS  Google Scholar 

  22. Fu C, Kuang Y, Huang Z, Wang X, Du N, Chen J, Zhou H (2010) Electrochemical co-reduction synthesis of graphene/Au nanocomposites in ionic liquid and their electrochemical activity. Chem Phys Lett 499:250–253

    Article  CAS  Google Scholar 

  23. Shinde DB, Debgupta J, Kushwaha A, Aslam M, Pillai VK (2011) Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons. J Am Chem Soc 133:4168–4171

    Article  CAS  Google Scholar 

  24. John R, Shinde DB, Liu L, Ding F, Xu Z, Vijayan C, Pillai VK, Pradeep T (2014) Sequential electrochemical unzipping of single-walled carbon nanotubes to graphene ribbons revealed by in situ Raman spectroscopy and imaging. ACS Nano 8:234–242

    Article  CAS  Google Scholar 

  25. Wang ZJ, Zhou XZ, Zhang J, Boey F, Zhang H (2009) Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. J Phys Chem C 113:14071

    Article  CAS  Google Scholar 

  26. Shao YY, Wang J, Wu H, Liu J, Aksay IA, Lin YH (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–1036

    Article  CAS  Google Scholar 

  27. Ramesha GK, Sampath S (2009) Electrochemical reduction of oriented graphene oxide films: an in situ raman spectroelectrochemical study. J Phys Chem C 113:7985

    Article  CAS  Google Scholar 

  28. Liu S, Ou J, Wang J, Liu X, Yang S (2011) A simple two-step electrochemical synthesis of graphene sheets film on the ITO electrode as supercapacitors. J Appl Electrochem 41:881–884

    Article  CAS  Google Scholar 

  29. Zhang X, Zhang D, Chen Y, Sun X, Ma Y (2012) Electrochemical reduction of graphene oxide films: preparation, characterization and their electrochemical properties. Chin Sci Bull 57:3045–3050

    Article  CAS  Google Scholar 

  30. Hilder M, Winther-Jensen B, Li D, Forsyth M, MacFarlane DR (2011) Direct electro-deposition of graphene from aqueous suspensions. Phys Chem Chem Phys 13:9187–9193

    Article  CAS  Google Scholar 

  31. Chen L, Tang Y, Wang K, Liu C, Luo S (2011) Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochem Commun 13:133–137

    Article  CAS  Google Scholar 

  32. Liu C, Wang K, Luo S, Tang Y, Chen L (2011) Direct electrodeposition of graphene enabling the one-step synthesis of graphene–metal nanocomposite films. Small 7:1203–1206

    Article  CAS  Google Scholar 

  33. Ye W, Zhang X, Chen Y, Du Y, Zhou F, Wang C (2013) Pulsed electrodeposition of reduced graphene oxide on glass carbon electrode as an effective support of electrodeposited Pt microspherical particles: nucleation studies and the application for methanol electro-oxidation. Int J Electrochem Sci 8:2122–2139

    CAS  Google Scholar 

  34. Yu H, He J, Sun L, Tanaka S, Fugetsu B (2013) Influence of the electrochemical reduction process on the performance of graphene-based capacitors. Carbon 51:94–101

    Article  CAS  Google Scholar 

  35. Wang Z, Wu S, Zhang J, Chen P, Yang G, Zhou X, Zhang Q, Yan Q, Zhang H (2012) Comparative studies on single-layer reduced graphene oxide films obtained by electrochemical reduction and hydrazine vapor reduction. Nanoscale Res Lett 7:161

    Article  Google Scholar 

  36. Filik H, Çetintaş G, Avan AA, Koç SN, Boz İ (2013) Electrochemical sensing of acetaminophen on electrochemically reduced graphene oxide-Nafion composite film modified electrode. Int J Electrochem Sci 8:5724–5737

    CAS  Google Scholar 

  37. Wang G, Wang B, Park J, Wang Y, Sun B, Yao J (2009) Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation. Carbon 47:3242–3246

    Article  CAS  Google Scholar 

  38. Lee SH, Seo SD, Jin YH, Shim HW, Kim DW (2010) A graphite foil electrode covered with electrochemically exfoliated graphene nanosheets. Electrochem Commun 12:1419–1422

    Article  CAS  Google Scholar 

  39. Dilimon VS, Sampath S (2011) Electrochemical preparation of few layer-graphene nanosheets via reduction of oriented exfoliated graphene oxide thin films in acetamide–urea–ammonium nitrate melt under ambient conditions. Thin Solid Films 519:2323–2327

    Article  CAS  Google Scholar 

  40. Zhang D, Fu L, Liao L, Liu N, Dai B, Zhang C (2012) Preparation, characterization, and application of electrochemically functional graphene nanocomposites by one-step liquid-phase exfoliation of natural flake graphite with methylene blue. Nano Res 5:875–887

    Article  CAS  Google Scholar 

  41. Xu Q, Schwandt C, Chen GZ, Fray DJ (2002) Electrochemical investigation of lithium intercalation into graphite from molten lithium chloride. J Electroanal Chem 530:16–22

    Article  CAS  Google Scholar 

  42. Shao YY, Wang J, Engelhard M et al (2010) Facile and controllable electrochemical reduction of graphene oxide and its applications. J Mater Chem 20:743–748

    Article  CAS  Google Scholar 

  43. Harima Y, Setodoi S, Imae I, Komaguchi K, Ooyama Y, Ohshita J, Mizota H, Yano J (2011) Electrochemical reduction of graphene oxide in organic solvents. Electrochim Acta 56:5363–5368

    Article  CAS  Google Scholar 

  44. Ping J, Wang Y, Fan K, Wu J, Ying Y (2011) Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application. Biosens Bioelectron 28:204–209

    Article  CAS  Google Scholar 

  45. Kauppila J, Kunnas P, Damlin P, Viinakanoja A, Kvarnström C (2013) Electrochemical reduction of graphene oxide films in aqueous and organic solutions. Electrochim Acta 89:84–89

    Article  CAS  Google Scholar 

  46. Huang C, Grobert N, Watt AAR, Johnston C, Crossley A, Young NP, Grant PS (2013) Layer-by-layer spray deposition and unzipping of single-wall carbon nanotube-based thin film electrodes for electrochemical capacitors. Carbon 61:525–536

    Article  CAS  Google Scholar 

  47. Hasan SA, Rigueur JL, Harl RR, Krejci AJ, Gonzalo-Juan I, Rogers BR, Dickerson JH (2010) Transferable graphene oxide films with tunable microstructures. ACS Nano 4:7367–7372

    Article  CAS  Google Scholar 

  48. Wu ZS, Pei S, Ren W, Tang D, Gao L, Liu B, Li F, Liu C, Cheng HM (2009) Field emission of single-layer graphene films prepared by electrophoretic deposition. Adv Mater 21:1756

    Article  CAS  Google Scholar 

  49. Chen Y, Zhang X, Yu P, Ma YW (2009) Stable dispersions of graphene and highly conducting graphene films: a new approach to creating colloids of graphene monolayers. Chem Commun 30:4527

    Article  Google Scholar 

  50. Lee V, Whittaker L, Jaye C, Baroudi KM, Fischer DA, Banerjee S (2009) Large-area chemically modified graphene films: electrophoretic deposition and characterization by soft x-ray absorption spectroscopy. Chem Mater 21:3905–3916

    Article  CAS  Google Scholar 

  51. Pasricha R, Gupta S, Srivastava AK (2009) A facile and novel synthesis of Ag–graphene-based nanocomposites. Small 5:2253–2259

    Article  CAS  Google Scholar 

  52. Yin Z, Wu S, Zhou X, Huang X, Zhang Q, Boey F, Zhang H (2010) Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small 6:307–312

    Article  CAS  Google Scholar 

  53. Qiu L, Yang X, Gou X, Yang W, Ma ZF, Wallace GG, Li D (2010) Dispersing carbon nanotubes with graphene oxide in water and synergistic effects between graphene derivatives. Chem Eur J 16:10653–10658

    Article  CAS  Google Scholar 

  54. Xu J, Wang K, Zu SZ, Han BH, Wei Z (2010) Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4:5019–5026

    Article  CAS  Google Scholar 

  55. Guo Y, Guo S, Ren J, Zhai Y, Dong S, Wang E (2010) Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: synthesis and host-guest inclusion for enhanced electrochemical performance. ACS Nano 4:4001–4010

    Article  CAS  Google Scholar 

  56. Han TH, Lee WJ, Lee DH, Kim JE, Choi EY, Kim SO (2010) Peptide/graphene hybrid assembly into core/shell nanowires. Adv Mater 22:2060–2064

    Article  CAS  Google Scholar 

  57. Liu J, Fu S, Yuan B, Li Y, Deng Z (2010) Toward a universal “adhesive nanosheet” for the assembly of multiple nano-particles based on a protein-induced reduction/decoration of graphene oxide. J Am Chem Soc 132:7279–7281

    Article  CAS  Google Scholar 

  58. Lv W, Guo M, Liang MH, Jin FM, Cui L, Zhi L, Yang QH (2010) Graphene-DNA hybrids: self-assembly and electrochemical detection performance. J Mater Chem 20:6668–6673

    Article  CAS  Google Scholar 

  59. Lu T, Pan L, Li H, Nie C, Zhu M, Sun Z (2011) Reduced graphene oxide–carbon nanotubes composite films by electrophoretic deposition method for supercapacitors. J Electroanal Chem 661:270–273

    Article  CAS  Google Scholar 

  60. Kashimura S, Ishifune M (2004) Reduction of Oxygen containing compounds. In: Encyclopedia of Electrochemistry (A. J. Bard, M. Stratmann Eds.). Wiley-VCH, Weinheim, Germany, p 199

    Google Scholar 

Download references

Acknowledgments

Financial support is gratefully acknowledged from the Romanian Ministry of Education, CNCS-UEFISCDI, through the project number PN-II-RU-PD-2012-3-0124.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Pruna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Pruna, A., Pullini, D., Busquets, D.M. (2015). Electrochemical Fabrication of Graphene-Based Nanomaterials. In: Aliofkhazraei, M., Makhlouf, A. (eds) Handbook of Nanoelectrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-15207-3_6-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15207-3_6-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-15207-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics