Skip to main content

2015 | OriginalPaper | Buchkapitel

2. Complex Flows of Micro/Nano Structured Fluids: Reinforced Polymer Composites

verfasst von : Christophe Binetruy, Francisco Chinesta, Roland Keunings

Erschienen in: Flows in Polymers, Reinforced Polymers and Composites

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The motion of an ellipsoidal particle immersed in a Newtonian fluid was studied in the pioneering work of Jeffery in 1922. Suspensions of industrial interest usually involve particles with a variety of shapes. Moreover, suspensions composed of rods (a limit case of an ellipsoid) aggregate, leading to clusters with particular shapes that exhibit, when immersed in a flow, an almost rigid motion. In this chapter, we revisit the modeling and simulation of suspensions involving rods throughout the different scales of description (microscopic, mesoscopic and macroscopic) and the different concentration regimes (dilute, semi-dilute, semi-concentrated and concentrated), involving gradually richer physics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G.B. Jeffery, The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A102, 161–179 (1922)CrossRef G.B. Jeffery, The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A102, 161–179 (1922)CrossRef
2.
Zurück zum Zitat R. Keunings, in Micro-Macro Methods for the Multiscale Simulation of Viscoelastic Flow Using Molecular Models of Kinetic Theory. eds. by D.M. Binding, K. Walters. Rheology Reviews (British Society of Rheology, Durham, 2004), pp. 67–98 R. Keunings, in Micro-Macro Methods for the Multiscale Simulation of Viscoelastic Flow Using Molecular Models of Kinetic Theory. eds. by D.M. Binding, K. Walters. Rheology Reviews (British Society of Rheology, Durham, 2004), pp. 67–98
3.
Zurück zum Zitat R.B. Bird, C.F. Curtiss, R.C. Armstrong, O. Hassager, in Dynamic of Polymeric Liquid. Kinetic Theory, vol 2 (Wiley, New York, 1987) R.B. Bird, C.F. Curtiss, R.C. Armstrong, O. Hassager, in Dynamic of Polymeric Liquid. Kinetic Theory, vol 2 (Wiley, New York, 1987)
4.
Zurück zum Zitat M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1987) M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1987)
5.
Zurück zum Zitat A. Ammar, F. Chinesta, A particle strategy for solving the Fokker-Planck equation governing the fibre orientation distribution in steady recirculating flows involving short fibre suspensions. Lect. Notes Comput. Sci. Eng. 43, 1–16 (2005)CrossRefMathSciNet A. Ammar, F. Chinesta, A particle strategy for solving the Fokker-Planck equation governing the fibre orientation distribution in steady recirculating flows involving short fibre suspensions. Lect. Notes Comput. Sci. Eng. 43, 1–16 (2005)CrossRefMathSciNet
6.
Zurück zum Zitat C.V. Chaubal, A. Srinivasan, O. Egecioglu, L.G. Leal, Smoothed particle hydrodynamics techniques for the solution of kinetic theory problems. J. Non-Newtonian Fluid Mech. 70, 125–154 (1997)CrossRef C.V. Chaubal, A. Srinivasan, O. Egecioglu, L.G. Leal, Smoothed particle hydrodynamics techniques for the solution of kinetic theory problems. J. Non-Newtonian Fluid Mech. 70, 125–154 (1997)CrossRef
7.
Zurück zum Zitat C. Chauviere, A. Lozinski, Simulation of dilute polymer solutions using a Fokker-Planck equation. Comput. Fluids. 33, 687–696 (2004)CrossRefMATH C. Chauviere, A. Lozinski, Simulation of dilute polymer solutions using a Fokker-Planck equation. Comput. Fluids. 33, 687–696 (2004)CrossRefMATH
8.
Zurück zum Zitat F. Chinesta, G. Chaidron, A. Poitou, On the solution of the Fokker-Planck equation in steady recirculating flows involving short fibre suspensions. J. Non-Newtonian Fluid Mech. 113, 97–125 (2003)CrossRefMATH F. Chinesta, G. Chaidron, A. Poitou, On the solution of the Fokker-Planck equation in steady recirculating flows involving short fibre suspensions. J. Non-Newtonian Fluid Mech. 113, 97–125 (2003)CrossRefMATH
9.
Zurück zum Zitat C. Cruz, L. Illoul, F. Chinesta, G. Regnier, Effects of a bent structure on the linear viscoelastic response of carbon nanotube diluted suspensions. Rheol. Acta 49, 1141–1155 (2010)CrossRef C. Cruz, L. Illoul, F. Chinesta, G. Regnier, Effects of a bent structure on the linear viscoelastic response of carbon nanotube diluted suspensions. Rheol. Acta 49, 1141–1155 (2010)CrossRef
10.
Zurück zum Zitat C. Cruz, F. Chinesta, G. Regnier, Review on the Brownian dynamics simulation of bead-rod-spring models encountered in computational rheology. Arch. Comput. Methods Eng. 19(2), 227–259 (2012)CrossRefMathSciNet C. Cruz, F. Chinesta, G. Regnier, Review on the Brownian dynamics simulation of bead-rod-spring models encountered in computational rheology. Arch. Comput. Methods Eng. 19(2), 227–259 (2012)CrossRefMathSciNet
11.
Zurück zum Zitat H.C. Öttinger, M. Laso, in Smart Polymers in Finite-Element calculations, eds. by P. Moldenaers, R. Keunings. Theoretical and Applied Rheology, Proceedings on XIth International Congress on Rheology, vol. 1 (Elsevier, Amsterdam, 1992), pp. 286–288 H.C. Öttinger, M. Laso, in Smart Polymers in Finite-Element calculations, eds. by P. Moldenaers, R. Keunings. Theoretical and Applied Rheology, Proceedings on XIth International Congress on Rheology, vol. 1 (Elsevier, Amsterdam, 1992), pp. 286–288
12.
Zurück zum Zitat P. Wapperom, R. Keunings, V. Legat, The backward-tracking Lagrangian particle method for transient viscoelastic flows. J. Non-Newtonian Fluid Mech. 91, 273–295 (2000)CrossRefMATH P. Wapperom, R. Keunings, V. Legat, The backward-tracking Lagrangian particle method for transient viscoelastic flows. J. Non-Newtonian Fluid Mech. 91, 273–295 (2000)CrossRefMATH
13.
Zurück zum Zitat P. Wapperom, R. Keunings, Numerical simulation of branched polymer melts in transient complex flows using pom-pom models. J. Non-Newtonian Fluid Mech. 97, 267–281 (2001)CrossRefMATH P. Wapperom, R. Keunings, Numerical simulation of branched polymer melts in transient complex flows using pom-pom models. J. Non-Newtonian Fluid Mech. 97, 267–281 (2001)CrossRefMATH
14.
Zurück zum Zitat A. Lozinski, C. Chauviere, A fast solver for Fokker-Planck equation applied to viscoelastic flows calculations: 2D FENE model. J. Comput. Phys. 189, 607–625 (2003)CrossRefMATHMathSciNet A. Lozinski, C. Chauviere, A fast solver for Fokker-Planck equation applied to viscoelastic flows calculations: 2D FENE model. J. Comput. Phys. 189, 607–625 (2003)CrossRefMATHMathSciNet
15.
Zurück zum Zitat A. Ammar, B. Mokdad, F. Chinesta, R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J. Non-Newtonian Fluid Mech. 139, 153–176 (2006)CrossRefMATH A. Ammar, B. Mokdad, F. Chinesta, R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J. Non-Newtonian Fluid Mech. 139, 153–176 (2006)CrossRefMATH
16.
Zurück zum Zitat A. Ammar, B. Mokdad, F. Chinesta, R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Part II: transient simulation using space-time separated representations. J. Non-Newtonian Fluid Mech. 144, 98–121 (2007) A. Ammar, B. Mokdad, F. Chinesta, R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Part II: transient simulation using space-time separated representations. J. Non-Newtonian Fluid Mech. 144, 98–121 (2007)
17.
Zurück zum Zitat F. Chinesta, A. Ammar, A. Leygue, R. Keunings, An overview of the proper generalized decomposition with applications in computational rheology. J. Non-Newtonian Fluid Mech. 166, 578–592 (2011)CrossRefMATH F. Chinesta, A. Ammar, A. Leygue, R. Keunings, An overview of the proper generalized decomposition with applications in computational rheology. J. Non-Newtonian Fluid Mech. 166, 578–592 (2011)CrossRefMATH
18.
Zurück zum Zitat F. Chinesta, R. Keunings, A. Leygue, The Proper Generalized Decomposition for Advanced Numerical Simulations (Springer, New York, 2014)CrossRefMATH F. Chinesta, R. Keunings, A. Leygue, The Proper Generalized Decomposition for Advanced Numerical Simulations (Springer, New York, 2014)CrossRefMATH
19.
Zurück zum Zitat B. Mokdad, E. Pruliere, A. Ammar, F. Chinesta, On the simulation of kinetic theory models of complex fluids using the Fokker-Planck approach. Appl. Rheol. 17(2), 1–14, 26494 (2007) B. Mokdad, E. Pruliere, A. Ammar, F. Chinesta, On the simulation of kinetic theory models of complex fluids using the Fokker-Planck approach. Appl. Rheol. 17(2), 1–14, 26494 (2007)
20.
Zurück zum Zitat K. Chiba, A. Ammar, F. Chinesta, On the fiber orientation in steady recirculating flows involving short fibers suspensions. Rheol. Acta 44, 406–417 (2005)CrossRef K. Chiba, A. Ammar, F. Chinesta, On the fiber orientation in steady recirculating flows involving short fibers suspensions. Rheol. Acta 44, 406–417 (2005)CrossRef
21.
Zurück zum Zitat R. Keunings, On the Peterlin approximation for finitely extensible dumbbells. J. Non-Newtonian Fluid Mech. 68, 85–100 (1997)CrossRef R. Keunings, On the Peterlin approximation for finitely extensible dumbbells. J. Non-Newtonian Fluid Mech. 68, 85–100 (1997)CrossRef
22.
Zurück zum Zitat F. Folgar, C. Tucker, Orientation behavior of fibers in concentrated suspensions. J. Reinf. Plast. Comp. 3, 98–119 (1984) F. Folgar, C. Tucker, Orientation behavior of fibers in concentrated suspensions. J. Reinf. Plast. Comp. 3, 98–119 (1984)
25.
Zurück zum Zitat J. Hinch, G. Leal, The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles. J. Fluid Mech. 52, 683–712 (1972)CrossRefMATH J. Hinch, G. Leal, The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles. J. Fluid Mech. 52, 683–712 (1972)CrossRefMATH
26.
Zurück zum Zitat J. Hinch, G. Leal, Constitutive equations in suspension mechanics. Part I. J. Fluid Mech. 71, 481–495 (1975)CrossRefMATH J. Hinch, G. Leal, Constitutive equations in suspension mechanics. Part I. J. Fluid Mech. 71, 481–495 (1975)CrossRefMATH
27.
Zurück zum Zitat J. Hinch, G. Leal, Constitutive equations in suspension mechanics. Part II. J. Fluid Mech. 76, 187–208 (1976)CrossRefMATH J. Hinch, G. Leal, Constitutive equations in suspension mechanics. Part II. J. Fluid Mech. 76, 187–208 (1976)CrossRefMATH
28.
Zurück zum Zitat S. Advani (ed.), Flow and Rheology in Polymer Composites Manufacturing (Elsevier, Amsterdam, 1994) S. Advani (ed.), Flow and Rheology in Polymer Composites Manufacturing (Elsevier, Amsterdam, 1994)
29.
Zurück zum Zitat J. Azaiez, K. Chiba, F. Chinesta, A. Poitou, State-of-the-art on numerical simulation of fiber-reinforced thermoplastic forming processes. Arch. Comput. Methods Eng. 9(2), 141–198 (2002)CrossRefMATH J. Azaiez, K. Chiba, F. Chinesta, A. Poitou, State-of-the-art on numerical simulation of fiber-reinforced thermoplastic forming processes. Arch. Comput. Methods Eng. 9(2), 141–198 (2002)CrossRefMATH
30.
Zurück zum Zitat E. Cueto, R. Monge, F. Chinesta, A. Poitou, I. Alfaro, M. Mackley, Rheological modeling and forming process simulation of CNT nanocomposites. Int. J. Mater. Form. 3(2), 1327–1338 (2010)CrossRef E. Cueto, R. Monge, F. Chinesta, A. Poitou, I. Alfaro, M. Mackley, Rheological modeling and forming process simulation of CNT nanocomposites. Int. J. Mater. Form. 3(2), 1327–1338 (2010)CrossRef
31.
Zurück zum Zitat M.A. Martinez, E. Cueto, M. Doblar, F. Chinesta, Natural element meshless simulation of injection processes involving short fiber suspensions. J. Non-Newtonian Fluid Mech. 115, 51–78 (2003) M.A. Martinez, E. Cueto, M. Doblar, F. Chinesta, Natural element meshless simulation of injection processes involving short fiber suspensions. J. Non-Newtonian Fluid Mech. 115, 51–78 (2003)
32.
Zurück zum Zitat C. Tucker, Flow regimes for fiber suspensions in narrow gaps. J. Non-Newtonian Fluid Mech. 39, 239–268 (1991) C. Tucker, Flow regimes for fiber suspensions in narrow gaps. J. Non-Newtonian Fluid Mech. 39, 239–268 (1991)
33.
Zurück zum Zitat A. Ma, F. Chinesta, M. Mackley, The rheology and modelling of chemically treated carbon nanotube suspensions. J. Rheol. 53(3), 547–573 (2009)CrossRef A. Ma, F. Chinesta, M. Mackley, The rheology and modelling of chemically treated carbon nanotube suspensions. J. Rheol. 53(3), 547–573 (2009)CrossRef
34.
Zurück zum Zitat C. Petrie, The rheology of fibre suspensions. J. Non-Newtonian Fluid Mech. 87, 369–402 (1999)CrossRefMATH C. Petrie, The rheology of fibre suspensions. J. Non-Newtonian Fluid Mech. 87, 369–402 (1999)CrossRefMATH
35.
Zurück zum Zitat J. Ferec, G. Ausias, M.C. Heuzey, P. Carreau, Modeling fiber interactions in semiconcentrated fiber suspensions. J. Rheol. 53(1), 49–72 (2009)CrossRef J. Ferec, G. Ausias, M.C. Heuzey, P. Carreau, Modeling fiber interactions in semiconcentrated fiber suspensions. J. Rheol. 53(1), 49–72 (2009)CrossRef
36.
Zurück zum Zitat J. Wang, C.A. Silva, J.C. Viana, F.W.J. van Hattum, A.M. Cunha, C. Tucker, Prediction of fiber orientation in a rotating compressing and expanding mold. Polym. Eng. Sci. 48(7), 1405–1413 (2008) J. Wang, C.A. Silva, J.C. Viana, F.W.J. van Hattum, A.M. Cunha, C. Tucker, Prediction of fiber orientation in a rotating compressing and expanding mold. Polym. Eng. Sci. 48(7), 1405–1413 (2008)
37.
Zurück zum Zitat J. Wang, J. O’Gara, C. Tucker, An objective model for slow orientation kinetics in concentrated fiber suspensions: theory and rheological evidence. J. Rheol. 52(5), 1179–1200 (2008) J. Wang, J. O’Gara, C. Tucker, An objective model for slow orientation kinetics in concentrated fiber suspensions: theory and rheological evidence. J. Rheol. 52(5), 1179–1200 (2008)
38.
Zurück zum Zitat J. Phelps, C. Tucker, An anisotropic rotary diffusion model for fiber orientation in short and long fiber thermoplastics. J. Non-Newtonian Fluid Mech. 156(3), 165–176 (2009) J. Phelps, C. Tucker, An anisotropic rotary diffusion model for fiber orientation in short and long fiber thermoplastics. J. Non-Newtonian Fluid Mech. 156(3), 165–176 (2009)
39.
Zurück zum Zitat A. Ma, F. Chinesta, A. Ammar, M. Mackley, Rheological modelling of carbon nanotube aggregate suspensions. J. Rheol. 52(6), 1311–1330 (2008)CrossRef A. Ma, F. Chinesta, A. Ammar, M. Mackley, Rheological modelling of carbon nanotube aggregate suspensions. J. Rheol. 52(6), 1311–1330 (2008)CrossRef
40.
Zurück zum Zitat G. Ausias, X.J. Fan, R. Tanner, Direct simulation for concentrated fibre suspensions in transient and steady state shear flows. J. Non-Newtonian Fluid Mech. 135, 46–57 (2006)CrossRefMATH G. Ausias, X.J. Fan, R. Tanner, Direct simulation for concentrated fibre suspensions in transient and steady state shear flows. J. Non-Newtonian Fluid Mech. 135, 46–57 (2006)CrossRefMATH
41.
Zurück zum Zitat S. Le Corre, D. Caillerie, L. Orgéas, D. Favier, Behavior of a net of fibers linked by viscous interactions: theory and mechanical properties. J. Mech. Phys. Solids 52(2), 395–421 (2004)CrossRefMATHMathSciNet S. Le Corre, D. Caillerie, L. Orgéas, D. Favier, Behavior of a net of fibers linked by viscous interactions: theory and mechanical properties. J. Mech. Phys. Solids 52(2), 395–421 (2004)CrossRefMATHMathSciNet
42.
Zurück zum Zitat S. Le Corre, P. Dumont, L. Orgéas, D. Favier, Rheology of highly concentrated planar fiber suspensions. J. Rheol. 49(5), 1029 (2005) S. Le Corre, P. Dumont, L. Orgéas, D. Favier, Rheology of highly concentrated planar fiber suspensions. J. Rheol. 49(5), 1029 (2005)
43.
Zurück zum Zitat F. Chinesta, From single-scale to two-scales kinetic theory descriptions of rods suspensions. Arch. Comput. Methods Eng. 20(1), 1–29 (2013)CrossRefMathSciNet F. Chinesta, From single-scale to two-scales kinetic theory descriptions of rods suspensions. Arch. Comput. Methods Eng. 20(1), 1–29 (2013)CrossRefMathSciNet
44.
Zurück zum Zitat E. Abisset-Chavanne, R. Mezher, S. Le Corre, A. Ammar, F. Chinesta, Kinetic theory microstructure modeling in concentrated suspensions. Entropy 15, 2805–2832 (2013)CrossRefMathSciNet E. Abisset-Chavanne, R. Mezher, S. Le Corre, A. Ammar, F. Chinesta, Kinetic theory microstructure modeling in concentrated suspensions. Entropy 15, 2805–2832 (2013)CrossRefMathSciNet
45.
Zurück zum Zitat E. Abisset-Chavanne, F. Chinesta, J. Ferec, G. Ausias, R. Keunings, On the multiscale description of dilute suspensions of non-Brownian rigid clusters composed of rods. J. Non-Newtonian Fluid Mech. (in press) E. Abisset-Chavanne, F. Chinesta, J. Ferec, G. Ausias, R. Keunings, On the multiscale description of dilute suspensions of non-Brownian rigid clusters composed of rods. J. Non-Newtonian Fluid Mech. (in press)
46.
Zurück zum Zitat S. Advani, C. Tucker, The use of tensors to describe and predict fiber orientation in short fiber composites. J. Rheol. 31, 751–784 (1987) S. Advani, C. Tucker, The use of tensors to describe and predict fiber orientation in short fiber composites. J. Rheol. 31, 751–784 (1987)
47.
Zurück zum Zitat S. Advani, C. Tucker, Closure approximations for three-dimensional structure tensors. J. Rheol. 34, 367–386 (1990) S. Advani, C. Tucker, Closure approximations for three-dimensional structure tensors. J. Rheol. 34, 367–386 (1990)
48.
Zurück zum Zitat F. Dupret, V. Verleye, in Modelling the Flow of Fibre Suspensions in Narrow Gaps, eds. by D.A. Siginer, D. De Kee, R.P. Chabra. Advances in the Flow and Rheology of Non-Newtonian Fluids (Elsevier, Rheology Series, Amsterdam, 1999), pp. 1347–1398 F. Dupret, V. Verleye, in Modelling the Flow of Fibre Suspensions in Narrow Gaps, eds. by D.A. Siginer, D. De Kee, R.P. Chabra. Advances in the Flow and Rheology of Non-Newtonian Fluids (Elsevier, Rheology Series, Amsterdam, 1999), pp. 1347–1398
49.
Zurück zum Zitat M. Kroger, A. Ammar, F. Chinesta, Consistent closure schemes for statistical models of anisotropic fluids. J. Non-Newtonian Fluid Mech. 149, 40–55 (2008)CrossRef M. Kroger, A. Ammar, F. Chinesta, Consistent closure schemes for statistical models of anisotropic fluids. J. Non-Newtonian Fluid Mech. 149, 40–55 (2008)CrossRef
50.
Zurück zum Zitat E. Pruliere, A. Ammar, N. El Kissi, F. Chinesta, Recirculating flows involving short fiber suspensions: numerical difficulties and efficient advanced micro-macro solvers. Arch. Comput. Methods Eng. State Art Rev. 16, 1–30 (2009)CrossRefMATH E. Pruliere, A. Ammar, N. El Kissi, F. Chinesta, Recirculating flows involving short fiber suspensions: numerical difficulties and efficient advanced micro-macro solvers. Arch. Comput. Methods Eng. State Art Rev. 16, 1–30 (2009)CrossRefMATH
51.
Zurück zum Zitat P. Grassia, J. Hinch, L.C. Nitsche, Computer simulations of brownian motion of complex systems. J. Fluid Mech. 282, 373–403 (1995)CrossRefMATHMathSciNet P. Grassia, J. Hinch, L.C. Nitsche, Computer simulations of brownian motion of complex systems. J. Fluid Mech. 282, 373–403 (1995)CrossRefMATHMathSciNet
52.
Zurück zum Zitat P. Grassia, J. Hinch, Computer simulations of polymer chain relaxation via brownian motion. J. Fluid Mech. 308, 255–288 (1996)CrossRefMATH P. Grassia, J. Hinch, Computer simulations of polymer chain relaxation via brownian motion. J. Fluid Mech. 308, 255–288 (1996)CrossRefMATH
53.
54.
Zurück zum Zitat P. Dumont, S. Le Corre, L. Orgeas, D. Favier, A numerical analysis of the evolution of bundle orientation in concentrated fibre-bundle suspensions. J. Non-Newtonian Fluid Mech. 160, 76–92 (2009)CrossRefMATH P. Dumont, S. Le Corre, L. Orgeas, D. Favier, A numerical analysis of the evolution of bundle orientation in concentrated fibre-bundle suspensions. J. Non-Newtonian Fluid Mech. 160, 76–92 (2009)CrossRefMATH
55.
Zurück zum Zitat J. Ferec, E. Abisset-Chavanne, G. Ausias, F. Chinesta, The use of interaction tensors to describe and predict rod interactions in rod suspensions. Rheol. Acta 53(5–6), 445–456 (2014)CrossRef J. Ferec, E. Abisset-Chavanne, G. Ausias, F. Chinesta, The use of interaction tensors to describe and predict rod interactions in rod suspensions. Rheol. Acta 53(5–6), 445–456 (2014)CrossRef
56.
Zurück zum Zitat E. Pichelin, T. Coupez, Finite element solution of the 3D mold filling for viscous incompressible fluid. Comput. Methods Appl. Mech. Eng. 163, 359 (1998)CrossRefMATHMathSciNet E. Pichelin, T. Coupez, Finite element solution of the 3D mold filling for viscous incompressible fluid. Comput. Methods Appl. Mech. Eng. 163, 359 (1998)CrossRefMATHMathSciNet
57.
Zurück zum Zitat D. Gonzalez, E. Cueto, F. Chinesta, M. Doblare, A natural element updated Lagrangian strategy for free-surface fluid dynamics. J. Comput. Phys. 223(1), 127–150 (2007)CrossRefMATHMathSciNet D. Gonzalez, E. Cueto, F. Chinesta, M. Doblare, A natural element updated Lagrangian strategy for free-surface fluid dynamics. J. Comput. Phys. 223(1), 127–150 (2007)CrossRefMATHMathSciNet
58.
Zurück zum Zitat T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, P. Krysl, Meshless methods: an overview and recent developments. Comput. Methods Appl. Mech. Eng. 139, 3–47 (1998)CrossRef T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, P. Krysl, Meshless methods: an overview and recent developments. Comput. Methods Appl. Mech. Eng. 139, 3–47 (1998)CrossRef
59.
Zurück zum Zitat F. Chinesta, S. Cescotto, E. Cueto, P. Lorong, Natural Element Method for the Simulation of Structures and Processes (ISTE Wiley, London, 2011)MATH F. Chinesta, S. Cescotto, E. Cueto, P. Lorong, Natural Element Method for the Simulation of Structures and Processes (ISTE Wiley, London, 2011)MATH
61.
Zurück zum Zitat V. Belikov, V. Ivanov, V. Kontorovich, S. Korytnik, A. Semenov, The non-sibsonian interpolation: a new method of interpolation of the values of a function on an arbitrary set of points. Comput. Math. Math. Phys. 37(1), 9–15 (1997) V. Belikov, V. Ivanov, V. Kontorovich, S. Korytnik, A. Semenov, The non-sibsonian interpolation: a new method of interpolation of the values of a function on an arbitrary set of points. Comput. Math. Math. Phys. 37(1), 9–15 (1997)
62.
Zurück zum Zitat E. Cueto, M. Doblare, L. Gracia, Imposing essential boundary conditions in the natural element method by means of density-scaled alpha-shapes. Int. J. Numer. Methods Eng. 49(4), 519–546 (2000)CrossRefMATHMathSciNet E. Cueto, M. Doblare, L. Gracia, Imposing essential boundary conditions in the natural element method by means of density-scaled alpha-shapes. Int. J. Numer. Methods Eng. 49(4), 519–546 (2000)CrossRefMATHMathSciNet
63.
Zurück zum Zitat J. Yvonnet, D. Ryckelynck, P. Lorong, F. Chinesta, A new extension of the natural element method for non-convex and discontinuous problems: the constrained natural element method. Int. J. Numer. Methods Eng. 60(8), 1452–1474 (2004)CrossRefMathSciNet J. Yvonnet, D. Ryckelynck, P. Lorong, F. Chinesta, A new extension of the natural element method for non-convex and discontinuous problems: the constrained natural element method. Int. J. Numer. Methods Eng. 60(8), 1452–1474 (2004)CrossRefMathSciNet
64.
Zurück zum Zitat J.A. Garcia, Ll. Gascon, E. Cueto, I. Ordeig, F. Chinesta, Meshless methods with application to resin transfer molding simulation. Comput. Methods Appl. Mech. Eng. 198, 27002709 (2009) J.A. Garcia, Ll. Gascon, E. Cueto, I. Ordeig, F. Chinesta, Meshless methods with application to resin transfer molding simulation. Comput. Methods Appl. Mech. Eng. 198, 27002709 (2009)
65.
Zurück zum Zitat E. Cueto, M. Laso, F. Chinesta, Meshless stochastic simulation of maicro-macro kinetic theory models. Int. J. Multiscale Comput. Eng. 9(1), 1–16 (2011)CrossRef E. Cueto, M. Laso, F. Chinesta, Meshless stochastic simulation of maicro-macro kinetic theory models. Int. J. Multiscale Comput. Eng. 9(1), 1–16 (2011)CrossRef
66.
Zurück zum Zitat E. Cueto, A. Ma, F. Chinesta, M. Mackley, Numerical simulation of spin coating processes involving functionalised carbon nanotube suspensions. Int. J. Mater. Form. 1(2), 89–99 (2008)CrossRef E. Cueto, A. Ma, F. Chinesta, M. Mackley, Numerical simulation of spin coating processes involving functionalised carbon nanotube suspensions. Int. J. Mater. Form. 1(2), 89–99 (2008)CrossRef
67.
Zurück zum Zitat J. Yvonnet, P. Villon, F. Chinesta, Natural element approximations involving bubbles for treating mechanical models in incompressible media. Int. J. Numer. Methods Eng. 66(7), 1125–1152 (2006)CrossRefMATHMathSciNet J. Yvonnet, P. Villon, F. Chinesta, Natural element approximations involving bubbles for treating mechanical models in incompressible media. Int. J. Numer. Methods Eng. 66(7), 1125–1152 (2006)CrossRefMATHMathSciNet
68.
Zurück zum Zitat A. Ma, F. Chinesta, M. Mackley, A. Ammar, The rheological modelling of carbon nanotube (CNT) suspensions in steady shear flows. Int. J. Mat. Form. 2, 83–88 (2008)CrossRef A. Ma, F. Chinesta, M. Mackley, A. Ammar, The rheological modelling of carbon nanotube (CNT) suspensions in steady shear flows. Int. J. Mat. Form. 2, 83–88 (2008)CrossRef
69.
Zurück zum Zitat F. Chinesta, A. Ammar, A. Falco, M. Laso, On the reduction of stochastic kinetic theory models of complex fluids. Model. Simul. Mater. Sci. Eng. 15, 639–652 (2007)CrossRef F. Chinesta, A. Ammar, A. Falco, M. Laso, On the reduction of stochastic kinetic theory models of complex fluids. Model. Simul. Mater. Sci. Eng. 15, 639–652 (2007)CrossRef
70.
Zurück zum Zitat R. Shanker, J.W. Gillespie, S.I. Güçeri, On the effect of nonhomogeneous flow fields on the orientation distribution and rheology of fiber suspensions. Polym. Eng. Sci. 31, 161–171 (1991)CrossRef R. Shanker, J.W. Gillespie, S.I. Güçeri, On the effect of nonhomogeneous flow fields on the orientation distribution and rheology of fiber suspensions. Polym. Eng. Sci. 31, 161–171 (1991)CrossRef
71.
Zurück zum Zitat R. Shanker, The effect of non homogeneous flow fields and hydrodynamic interactions on the rheology of fiber suspensions, Ph.D. dissertation, University of Delaware, 1991 R. Shanker, The effect of non homogeneous flow fields and hydrodynamic interactions on the rheology of fiber suspensions, Ph.D. dissertation, University of Delaware, 1991
72.
Zurück zum Zitat E. Fried, M.E. Gurtin, Tractions, balances, and boundary conditions for non-simple materials with application to liquid flow at small length scales. Arch. Ration. Mech. Anal. 182, 513–554 (2006)CrossRefMATHMathSciNet E. Fried, M.E. Gurtin, Tractions, balances, and boundary conditions for non-simple materials with application to liquid flow at small length scales. Arch. Ration. Mech. Anal. 182, 513–554 (2006)CrossRefMATHMathSciNet
73.
Zurück zum Zitat T. Kim, J. Dolbow, E. Fried, A numerical method for a second-gradient theory of incompressible fluid flow. J. Comput. Phys. 223, 551–570 (2007) T. Kim, J. Dolbow, E. Fried, A numerical method for a second-gradient theory of incompressible fluid flow. J. Comput. Phys. 223, 551–570 (2007)
74.
Zurück zum Zitat E. Abisset-Chavanne, J. Ferec, G. Ausias, E. Cueto, F. Chinesta, R. Keunings, A second-gradient theory of dilute suspensions of flexible rods in a Newtonian fluid. Arch. Comput. Methods Eng. (in press) E. Abisset-Chavanne, J. Ferec, G. Ausias, E. Cueto, F. Chinesta, R. Keunings, A second-gradient theory of dilute suspensions of flexible rods in a Newtonian fluid. Arch. Comput. Methods Eng. (in press)
Metadaten
Titel
Complex Flows of Micro/Nano Structured Fluids: Reinforced Polymer Composites
verfasst von
Christophe Binetruy
Francisco Chinesta
Roland Keunings
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-16757-2_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.