Skip to main content

Hydrothermal Pretreatments of Macroalgal Biomass for Biorefineries

  • Chapter
Algal Biorefineries

Abstract

Recently, macroalgal biomass is gaining wide attention as an alternative in the production of biofuels (as bioetanol and biogas) and compounds with high added value with specific properties (antioxidants, anticoagulants, anti-inflammatories) for applications in food, medical and energy industries in accordance with the integrated biorefineries. Furthermore, biorefinery concept requires processes that allow efficient utilization of all components of the biomass. The pretreatment step in a biorefinery is often based on hydrothermal principles of high temperatures in aqueous solution. Therefore, in this chapter, a review on the application of hydrothermal pretreatment on macroalgal biomass is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar MJ, Batista AP, Nunes MC, Cordobés F, Raymundo A, Guerrero A (2011) From egg yolk/κ-Carrageenan dispersions to gel systems: linear viscoelasticity and texture analysis. Food Hydrocolloid 25:654–658

    Article  CAS  Google Scholar 

  • Akhtar J, Amin NAS (2011) A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew Sustain Energ Rev 15:1615–1624

    Article  CAS  Google Scholar 

  • Alvira P, Tomás-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  CAS  PubMed  Google Scholar 

  • Anastasakis K, Ross AB (2015) Hydrothermal liquefaction of four brown macro-algae commonly found on the UK coasts: an energetic analysis of the process and comparison with bio-chemical conversion methods. Fuel 139:546–553

    Article  CAS  Google Scholar 

  • Anastyuk SD, Imbs IT, Dmitrnok PS, Zvyagintseva TN (2014) Rapid mass spectrometric analysis of a novel fucoidan, extracted from the brown alga Coccophora langsdorfii. Sci World J. doi:10.1155/2014/972450

    Google Scholar 

  • Andrade PB, Barbosa M, Matos RP, Lopes G, Vinholes J, Mouga T, Valentão P (2013) Valuable compounds in macroalgae extracts. Food Chem 138:1819–1828

    Article  CAS  PubMed  Google Scholar 

  • Astorga-España MS, Mansilla A (2013) Sub-Antarctic macroalgae: opportunities for gastronomic tourism and local fisheries in the Region of Magallanes and Chilean Antarctic Territory. J Appl Phycol 26:973–978

    Article  CAS  Google Scholar 

  • Azapagic A (2014) Sustainability considerations for integrated biorefineries. Trends Biotechnol 32:1–4

    Article  CAS  PubMed  Google Scholar 

  • Baghel RS, Trivedi N, Gupta V, Neori A, Reddy CRK, Lali A, Jha B (2015) Biorefining of marine macroalgal biomass for production of biofuel and commodity chemicals. Green Chem. doi:10.1039/C4GC02532F (In press)

    Google Scholar 

  • Balboa EM, Rivas S, Moure A, Domínguez H, Parajó JC (2013) Simultaneous extraction and depolymerization of fucoidan from Sargassum muticum in aqueous media. Mar Drugs 11:4612–4627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Balboa EM, Soto ML, Nogueira DR, González-López N, Conde E, Moure A, Vinardell MP, Mitjans M, Domínguez H (2014) Potential of antioxidant extracts produced by aqueous processing of renewable resources for the formulation of cosmetics. Ind Crops Prod 58:104–110

    Article  CAS  Google Scholar 

  • Barabanova AO, Tishchenko IP, Glazunov VP, Soloveva TF, Ermak IM (2010) Characteristics of polysaccharides and protein associated with them from dried and freshly collected red alga Tichocarpus crinitus. Chem Nat Compd 46:509–513

    Article  CAS  Google Scholar 

  • Barbot YN, Falk HM, Benz R (2014) Thermo-acidic pretreatment of marine brown algae Fucus vesiculosus to increase methane production—a disposal principle for macroalgae waste from beaches. J Appl Phycol. doi:10.1007/s10811-014-0339-x (In press)

    Google Scholar 

  • Bedoux G, Hardouin K, Burlot AS, Nathalie Buorgougnon (2014) Bioactive components from seaweeds: cosmetics applications and future development. In: Nathalie Bourgougnon (ed) Advances in Botanical Research focuses on sea plants, including algae, seaweed, and diatoms, Academic Press, ISBN:9780124080621

    Google Scholar 

  • Borines MG, De Leon RL, McHenry MP (2011) Bioethanol production from farming non-food macroalgae in Pacific island nations: chemical constituents, bioethanol yields, and prospective species in the Philippines. Renew Sustain Energ Rev 15:4432–4435

    Article  CAS  Google Scholar 

  • Bozell JJ (2008) Feedstocks for the future – biorefinery production of chemicals from renewable carbon. Clean 36:641–647

    CAS  Google Scholar 

  • Bruhn A, Dahl J, Nielsen HB, Nikolaisen L, Rasmussen MB, Markagr S, Olesen B, Arias C, Jensen PD (2011) Bioenergy potential of Ulva lactuca: biomass yield, methane production and combustion. Bioresour Technol 102:2595–2604

    Article  CAS  PubMed  Google Scholar 

  • Castro LSEPW, Pinheiro TS, Castro AJG, Dore CMPG, Silva NB, Alves MGCF, Santos MSN, Leite EL (2014) Fucose-containing sulfated polysaccharides from brown macroalgae Lobophora variegata with antioxidant, anti-inflammatory, and antitumoral effects. J Appl Phycol 26:1783–1790

    Article  CAS  Google Scholar 

  • Chen P, Min M, Chen Y, Wang L, Li Y, Chen Q, Wang C, Wan Y, Wang X, Cheng Y, Deng S, Hennessy K, Lin X, Liu Y, Wang Y, Martinez B, Ruan R (2009) Review of the biological and engineering aspects of algae to fuels approach. Int J Agric Biol Eng 2:1–30

    Google Scholar 

  • Chirapart A, Praiboon J, Puangsombat P, Pattanapon C, Nunraksa N (2014) Chemical composition and ethanol production potential of Thai seaweed species. J Appl Phycol 26:979–986

    Article  CAS  Google Scholar 

  • Cho Y, Kim H, Kim SK (2013) Bioethanol production from brown seaweed, Undaria pinnatifida, using NaCl acclimated yeast. Bioprocess Biosyst Eng 36:713–719

    Article  CAS  PubMed  Google Scholar 

  • Choi W, Kang D, Lee H (2013) Enhancement of the saccharification yields of Ulva pertusa Kjellmann and rape stems by the high-pressure steam pretreatment process. Biotechnol Bioprocess Eng 18:728–735

    Article  CAS  Google Scholar 

  • Ciancia M, Sato Y, Nonami H, Cerezo AS, Erra-Balsells R, Matulewicz MC (2005) Autohydrolysis of a partially cyclized mu/nu-carrageenan and structural elucidation of the oligosaccharides by chemical analysis, NMR spectroscopy and UV-MALDI mass spectrometry. Arkivoc 12:319–331

    Google Scholar 

  • Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819

    Article  CAS  PubMed  Google Scholar 

  • Cofrades S, López-López I, Solas MT, Bravo L, Jiménez-Colmenero F (2008) Influence of different types and proportions of added edible seaweeds on characteristics of low-salt gel/emulsion meat systems. Meat Sci 79:767–776

    Article  CAS  PubMed  Google Scholar 

  • Dawczynski C, Schubert R, Jahreis G (2007) Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem 103:891–899

    Article  CAS  Google Scholar 

  • De Quirós AR, Lage-Yusty MA, López-Hernández J (2010) Determination of phenolic compounds in macroalgae for human consumption. Food Chem 121:634–638

    Article  CAS  Google Scholar 

  • Delattre C, Fenoradosoa TA, Michaud P (2011) Galactans: an overview of their most important sourcing and applications as natural polysaccharides. Braz Arch Biol Technol 54:1075–1092

    CAS  Google Scholar 

  • Denis C, Morançais M, Li M, Deniaud E, Gaudin P, Wielgosz-Collin G, Barnathan G, Jaouen P, Fleurence J (2010) Study of the chemical composition of edible red macroalgae Grateloupia turuturu from Brittany (France). Food Chem 119:913–917

    Article  CAS  Google Scholar 

  • Díaz-Vázquez LM, Rojas-Pérez A, Fuentes-Caraballo M, Robles-Ramos IV, Jena U, Das K (2015) Demineralization of Sargassum spp. macroalgae biomass: selective thermochemical liquefaction process for bio-oil production. Frontiers Energy Res. doi:10.3389/fenrg.2015.00006

    Google Scholar 

  • Eboibi BE, Lewis DM, Ashman PJ, Chinnasamy S (2014) Effect of operating conditions on yield and quality of biocrude during hydrothermal liquefaction of halophytic microalga Tetraselmis sp. Bioresour Technol 170:20–29

    Article  CAS  PubMed  Google Scholar 

  • Elliot DC, Hart TR, Neuenschwander GG, Rotness LJ, Roessijadi G, Zacher AH, Magnuson JK (2014) Hydrothermal processing of macroalgal feedstocks in continuous-flow reactors. Sustain Chem Eng 2:207–215

    Article  CAS  Google Scholar 

  • Elliot DC, Biller P, Roos AB, Schmidt AJ, Jones SB (2015) Hydrothermal liquefaction of biomass: developments from batch to continuous process. Bioresour Technol 178:147–156

    Article  CAS  Google Scholar 

  • Elliott DC, Hart TR, Schmidt AJ, Neuenschwander GG, Rotness LJ, Olarte MV, Zacher AH, Albrecht KO, Hallen RT, Holladay JE (2013) Process development for hydrothermal liquefaction of algae feedstocks in a continuous-flow reactor. Algal Res 2:445–454

    Article  Google Scholar 

  • Fang Z (2013) Pretreatment techniques for biofuels and biorefineries. Springer, Berlin. ISBN 978-3-642-32735-3

    Book  Google Scholar 

  • FAO (2012) Global Aquaculture Production 1950–2012. Available from: http://www.fao.org/figis/servlet/TabSelector. Accessed 15 Nov 2014

  • Fasahati P, Woo HC, Liu JJ (2015) Industrial-scale bioethanol production from brown algae: effects of pretreatment processes on plant economics. Appl Energy 139:175–187

    Article  CAS  Google Scholar 

  • Fitton JH (2011) Therapies from fucoidan; multifunctional marine polymers. Mar Drugs 9:1731–1760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ge L, Wang P, Mou H (2011) Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renew Energ 36:84–89

    Article  CAS  Google Scholar 

  • Golberg A, Vitkin E, Linshiz G, Khan SA, Hillson NJ, Yakhini Z, Yarmush ML (2014) Proposed design of distributed macroalgal biorefineries: thermodynamics, bioconversion technology, and sustainability implications for developing economies. Biofuels Bioprod Bioref 8:67–82

    Article  CAS  Google Scholar 

  • Gómez-Ordóñez E, Jiménez-Escrig A, Rupérez P (2010) Dietary fibre and physicochemical properties of several edible seaweeds from the northwestern Spanish coast. Food Res Int 43:2289–2294

    Article  CAS  Google Scholar 

  • González-López N, Moure A, Domínguez H (2012) Hydrothermal fractionation of Sargassum muticum biomass. J Appl Phycol 24:1569–1578

    Article  CAS  Google Scholar 

  • Gressler V, Fujii MT, Martins AP, Colepicolo P, Mancini-Filho J, Pinto E (2011) Biochemical composition of two red seaweed species grown on the Brazilian coast. J Sci Food Agric 91:1687–1692

    Article  CAS  PubMed  Google Scholar 

  • Hayashi L, Bulboa C, Kradolfer P, Soriano G, Robledo D (2014) Cultivation of red seaweeds: a Latin American perspective. J Appl Phycol 26(22):719–727

    Article  Google Scholar 

  • Haykiri-Acma H, Yaman S, Kucukbayrak S (2013) Production of biobriquettes from carbonized brown seaweed. Fuel Process Technol 106:33–40

    Article  CAS  Google Scholar 

  • Hoang MH, Kim JY, Lee JH, You S, Lee SJ (2015) Antioxidative, hypolipidemic, and anti-inflammatory activities of sulfated polysaccharides from Monostroma nitidum. Food Sci Biotechnol 24:199–205

    Article  CAS  Google Scholar 

  • Hoffmann RA, Russell AR, Gidley MJ (1996) Molecular weight distribution of carrageenans. In: Philips GO, Williams PJ, Wedlock DJ (eds) Gums and stabilisers for the food industry. IRL Press at the Oxford University Press, Oxford, pp 137–148

    Google Scholar 

  • Hong IK, Jeon H, Lee SB (2014) Comparison of red, brown and green seaweeds on enzymatic saccharification process. J Ind Eng Chem 20:2687–2691

    Article  CAS  Google Scholar 

  • Hughes SR, Gibbons WR, Moser BR, Rich JO (2013) Chapter 9: Sustainable multipurpose biorefineries for third-generation biofuels and value-added co-products(. In: Zhen Fang (ed) Biofuels – economy, environment and sustainability. InTech, Rijeka ISBN:978-953-51-0950-1

    Google Scholar 

  • Jang SS, Shirai Y, Uchida M, Wakisaka M (2012a) Production of mono sugar from acid hydrolysis of seaweed. Afr J Biotechnol 11:1953–1963

    CAS  Google Scholar 

  • Jang JS, Cho Y, Jeong GT, Kim SK (2012b) Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess Biosyst Eng 35:11–18

    Article  CAS  PubMed  Google Scholar 

  • Jard G, Dumas C, Delgenes JP, Marfaing H, Sialve B, Steyer JP, Carrere H (2013) Effect of thermochemical pretreatment on the solubilization and anaerobic biodegradability of the red macroalga Palmaria palmate. Biochem Eng J 79:253–258

    Article  CAS  Google Scholar 

  • Ji-Hyeon Y, Lee S, Choi WY, Kang DH, Lee HY, Jung KH (2011) Repeated-batch operation of surface-aerated fermentor for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum. J Microbiol Biotechnol 21:323–331

    Google Scholar 

  • Jung KW, Kim DH, Shin HS (2011) Fermentative hydrogen production from Laminaria japonica and optimization of thermal pretreatment conditions. Bioresour Technol 102:2745–2750

    Article  CAS  PubMed  Google Scholar 

  • Jung KA, Lim SR, Kim Y, Park JM (2013) Potentials of macroalgae as feedstocks for biorefinery. Bioresour Technol 135:182–190

    Article  CAS  PubMed  Google Scholar 

  • Kalimuthu S, Kim S (2015) Fucoidan, a sulfated polysaccharides from brown algae as therapeutic target for cancer (Chapter 7). In: Se-Kwon Kim (ed) Handbook of anticancer drugs from marine origin, Springer International Publishing, Switzerland, pp 145–164

    Google Scholar 

  • Kraan S (2013) Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig Adapt Strateg Glob Change 18:27–46

    Article  Google Scholar 

  • Kumar S, Gupta R, Kumar G, Sahoo D, Kuhad RC (2013) Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour Technol 135:150–156

    Article  CAS  PubMed  Google Scholar 

  • Li D, Chen L, Chen S, Zhang X, Chen F, Ye N (2012) Comparative evaluation of the pyrolytic and kinetic characteristics of a macroalga (Sargassum thunbergii) and a freshwater plant (Potamogeton crispus). Fuel 96:185–191

    Article  CAS  Google Scholar 

  • Malihan LB, Nisola GM, Mittal N, Seo JG, Chung WJ (2014) Blended ionic liquid systems for macroalgae pretreatment. Renew Energ 66:596–604

    Article  CAS  Google Scholar 

  • Marinho-Soriano E, Fonseca PC, Carneiro MAA, Moreira WSC (2006) Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour Technol 97:2402–2406

    Article  CAS  PubMed  Google Scholar 

  • Marquez GPB, Santiañez JE, Trono GC, Montaño MNE, Araki H, Takeuchi H, Hasegawa T (2014) Seaweed biomass of the Philippines: sustainable feedstock for biogas production. Renew Sustain Energ Rev 38:1056–1068

    Article  Google Scholar 

  • Marsham S, Scott GW, Tobin ML (2007) Comparison of nutritive chemistry of a range of temperate seaweeds. Food Chem 100:1331–1336

    Article  CAS  Google Scholar 

  • Matanjun P, Mohamed S, Mustapha NM, Muhammad K (2009) Nutrient content of tropical edible seaweeds Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum. J Appl Phycol 21:75–80

    Article  CAS  Google Scholar 

  • Meillisa A, Woo H, Chun B (2015) Production of monosaccharides and bio-active compounds derived from marine polysaccharides using subcritical water hydrolysis. Food Chem 171:70–77

    Article  CAS  PubMed  Google Scholar 

  • Mohamed S, Hashim SN, Rahman HA (2012) Seaweeds: a sustainable functional food for complementary and alternative therapy. Trends Food Sci Technol 23:83–96

    Article  CAS  Google Scholar 

  • Moncada J, Tamayo JA, Cardona CA (2014) Integrating first, second, and third generation biorefineries: incorporating microalgae into the sugarcane biorefinery. Chem Eng Sci 118:126–140

    Article  CAS  Google Scholar 

  • Montingelli ME, Tedesco S, Olabi AG (2015) Biogas production from algal biomass. Renew Sustain Energ Rev 43:961–972

    Article  CAS  Google Scholar 

  • National Renewable Energy Laboratory (NREL) Available at: http://www.nrel.gov/biomass/biorefinery.html. Accessed 15 Sep 2014

  • Navarro DA, Stortz CA (2005) Microwave-assisted alkaline modification of red seaweed galactans. Carbohydr Polym 62:187–191

    Article  CAS  Google Scholar 

  • Neveux N, Magnusson M, Maschmeyer T, Nys R, Paul NA (2014a) Comparing the potential production and value of high‐energy liquid fuels and protein from marine and freshwater macroalgae. GCB Bioenerg 7:673–689

    Google Scholar 

  • Neveux N, Yuen AKL, Jazrawi C, Magnusson M, Haynes BS, Masters AF, Montoya A, Paul NA, Maschmeyer T, Nys R (2014b) Pre- and post-harvest treatment of macroalgae to improve the quality of feedstock for hydrothermal liquefaction. Algal Res 6:22–31

    Article  Google Scholar 

  • Nielsen HB, Heiske S (2011) Anaerobic digestion of macroalgae: methane potentials, pre-treatment, inhibition and co-digestion. Water Sci Technol 64:1723–1729

    Article  CAS  PubMed  Google Scholar 

  • Okuda K, Oka K, Onda A, Kaijiyoshi K, Hiraoka M, Yanagisawa K (2008) Hydrothermal fractional pretreatment of sea algae and its enhanced enzymatic hydrolysis. J Chem Technol Biotechnol 83:863–841

    Article  CAS  Google Scholar 

  • Oliveira JV, Alves MM, Costa JC (2014) Design of experiments to assess pre-treatment and co-digestion strategies that optimize biogas production from macroalgae Gracilaria vermiculophylla. Bioresour Technol 162:323–330

    Article  CAS  PubMed  Google Scholar 

  • Oliveira JV, Alves MM, Costa JC (2015) Optimization of biogas production from Sargassum sp. using a design of experiments to assess the co-digestion with glycerol and waste frying oil. Bioresour Technol 175:480–485

    Article  CAS  Google Scholar 

  • Ortiz J, Romero N, Robert P, Araya J, Lopez-Hernandez J, Bozzo C, Navarrete E, Osorio A, Rios A (2006) Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea Antarctica. Food Chem 99:98–104

    Article  CAS  Google Scholar 

  • Overend RP, Chornet E (1987) Fractionation of lignocellulosic by steam-aqueous pretreatments. Philos Trans R Soc Lond 321:523–536

    Article  CAS  Google Scholar 

  • Peña-Rodríguez A, Mawhinney TP, Ricque-Marie D, Cruz-Suárez LE (2011) Chemical composition of cultivated seaweed Ulva clathrata (Roth) C. Agardh. Food Chem 129:491–498

    Article  CAS  Google Scholar 

  • Peng Y, Xie E, Zheng K, Fredimoses M, Yang X, Zhou X, Wang Y, Yang B, Lin X, Liu J, Liu Y (2013) Nutritional and chemical composition and antiviral activity of cultivated seaweed Sargassum naozhouense Tseng et Lu. Mar Drugs 11:20–32

    Article  PubMed Central  CAS  Google Scholar 

  • Pham TH, Um Y, Yoon HH (2013) Pretreatment of macroalgae for volatile fatty acid production. Bioresour Technol 146:754–757

    Article  CAS  PubMed  Google Scholar 

  • Podkorytova AV, Vafina LH, Kovaleva EA, Mikhailov VI (2007) Production of algal gels from the brown alga, Laminaria japonica Aresch., and their biotechnological applications. J Appl Phycol 19:827–830

    Article  CAS  Google Scholar 

  • Poots T, Du J, Paul M, May P, Beitle R, Hestekin J (2012) The production of butanol from Jamaica bay macro algae. Environ Prog Sustain Energ 31:29–36

    Article  CAS  Google Scholar 

  • Prajapati VD, Maheriya PM, Jani GH, Solanki HK (2014) Carrageenan: a natural seaweed polysaccharide and its applications. Carbohydr Polym 105:97–112

    Article  CAS  PubMed  Google Scholar 

  • Radulovich R, Umanzor S, Cabrera R, Mata R (2015) Tropical seaweeds for human food, their cultivation and its effect on biodiversity enrichment. Aquaculture 436:40–46

    Article  Google Scholar 

  • Rajauria G, Jaiswal AK, Abu-Ghannam A, Gupta S (2010) Effect of hydrothermal processing on colour, antioxidant and free radical scavenging capacities of edible Irish brown seaweeds. Int J Food Sci Technol 45:2485–2493

    Article  CAS  Google Scholar 

  • Rameshkumar S, Ramakritinan CM, Yokeshbabu M (2013) Proximate composition of some selected seaweeds from Palk bay and Gulf of Mannar, Tamilnadu, India. Asian J Biomed Pharm Sci 3:1–5

    Google Scholar 

  • Rioux LE, Turgeon SL, Beaulieu M (2007) Characterization of polysaccharides extracted from brown seaweeds. Carbohydr Polym 69:530–537

    Article  CAS  Google Scholar 

  • Rodriguez-Jasso RM, Mussatto SI, Pastrana L, Aguilar CN, Teixeira JA (2011) Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydr Polym 86:1137–1144

    Article  CAS  Google Scholar 

  • Rodriguez-Jasso RM, Mussatto SI, Sepúlveda L, Agrasar AT, Pastrana L, Aguilar CN, Teixeira JA (2013) Fungal fucoidanase production by solid-state fermentation in a rotating drum bioreactor using algal biomass as substrate. Food Bioprod Process 91:587–594

    Article  CAS  Google Scholar 

  • Rodriguez-Jasso RM, Mussatto SI, Pastrana L, Aguilar CN, Teixeira JA (2014) Chemical composition and antioxidant activity of sulphated polysaccharides extracted from Fucus vesiculosus using different hydrothermal processes. Chem Pap 68:203–209, 23

    Article  CAS  Google Scholar 

  • Roesijadi G, Jones SB, Snowden-Swan, Zhu Y (2010) Macroalgae as a biomass feedstock: A preliminary analysis. Pacific Northwest Laboratory and United States Department of Energy. Available from:http://www.pnl.gov/main/publications/external/technical_reports/pnnl-19944.pdf. Accessed 20 Nov 2014

  • Ruiz HA, Cerqueira MA, Silva HD, Rodríguez-Jasso RM, Vicente AA, Teixeira JA (2013a) Biorefinery valorization of autohydrolysis wheat straw hemicellulose to be applied in a polymer-blend film. Carbohydr Polym 92:2154–2162

    Article  CAS  PubMed  Google Scholar 

  • Ruiz HA, Rodríguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA (2013b) Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew Sustain Energ Rev 21:35–51

    Article  CAS  Google Scholar 

  • Ruiz HA, Parajó JC, Teixeira JA (2015) Biorefinery strategies for macroalgae-based in bioethanol production. In: Energy science and technology. Studium Press LLC, Houston (in press)

    Google Scholar 

  • Schultz-Jensen N, Thygesen A, Leipold F, Thomsen ST, Roslander C, Lilholt H, Bjerre AB (2013) Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol – comparison of five pretreatment technologies. Bioresour Technol 140:36–42

    Article  CAS  PubMed  Google Scholar 

  • Schumacher M, Yanik J, Sinag A, Kruse A (2011) Hydrothermal conversion of seaweeds in a batch autoclave. J Supercrit Fluids 58:131–135

    Article  CAS  Google Scholar 

  • Seaweed Site: information on marine algae. Available from: http://www.seaweed.ie. Accessed 20 Nov 2014

  • Senthilkumar K, Manivasagan P, Venkatesan J, Kim SK (2013) Brown seaweed fucoidan: biological activity and apoptosis, growth signaling mechanism in cancer. Int J Biol Macromol 60:366–374

    Article  CAS  PubMed  Google Scholar 

  • Shevchenko NM, Anastyuk SD, Menshova RV, Vishchuk OS, Isakov VI, Zadorozhny PA, Sikorskaya TV, Zvyagintseva TN (2014) Further studies on structure of fucoidan from brown alga Saccharina gurjanovae. Carbohydr Polym. doi:10.1016/j.carbpol.2014.12.042 (In press)

    PubMed  Google Scholar 

  • Shi J, Pu Y, Yang B, Ragauskas A, Wyman CE (2011) Comparison of microwaves to fluidized sand baths for heating tubular reactors for hydrothermal and dilute acid batch pretreatment of corn stover. Bioresour Technol 102:5952–5961

    Article  CAS  PubMed  Google Scholar 

  • Siddhanta AK, Prasad K, Meena R, Prasad G, Metha GK, Chhatbar MU, Oza MD, Kumar S, Sanandiya ND (2009) Profiling of cellulose content in Indian seaweed species. Bioresour Technol 100:6669–6673

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Balagurumurthy B, Bhaskar T (2015a) Hydrothermal liquefaction of macro algae: effect of feedstock composition. Fuel 146:60–74

    Google Scholar 

  • Singh R, Bhaskar T, Balagurumurthy B (2015b) Effect of solvent on the hydrothermal liquefaction of macro algae Ulva fasciata. Process Saf Environ Prot 93:154–160

    Google Scholar 

  • Sun C, Chen Y, Zhang X, Pan J, Cheng H, Wu M (2014) Draft genome sequence of Microbulbifer elongatus strain HZ11, a brown seaweed-degrading bacterium with potential ability to produce bioethanol from alginate. Mar Geonomics 18:83–85

    Article  Google Scholar 

  • Suutari M, Leskinen E, Fagerstedt K, Juparinen J, Kuupo Blomster J (2015) Macroalgae in biofuel production. Phycol Res 63:1–18

    Article  CAS  Google Scholar 

  • Tedesco S, Benyounis KY, Olabi AG (2013) Mechanical pretreatment effects on macroalgae-derived biogas production in co-digestion with sludge in Ireland. Energy 61:27–33

    Article  CAS  Google Scholar 

  • Tekin K, Karagoz S (2013) Non-catalytic and catalytic hydrothermal liquefaction of biomass. Res Chem Intermed 39:485–498

    Article  CAS  Google Scholar 

  • Tekin K, Karagoz S, Bektaş S (2014) A review of hydrothermal biomass processing. Renew Sustain Energ Rev 40:673–687

    Article  CAS  Google Scholar 

  • Tian C, Li B, Liu Z, Zhang Y, Lu H (2014) Hydrothermal liquefaction for algal biorefinery: a critical review. Renew Sustain Energ Rev 38:933–950

    Article  CAS  Google Scholar 

  • Titlyanov EA, Titlyanova TV (2010) Seaweed cultivation: methods and problems. Russ J Mar Biol 36:227–242

    Article  Google Scholar 

  • Trivedi N, Gupta V, Reddy CRK, Jha B (2013) Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile. Bioresour Technol 150:106–112

    Article  CAS  PubMed  Google Scholar 

  • Usov AI, Zelinsky ND (2013) Chapter 2: Chemical structures of algal polysaccharides. In: Domínguez H (ed) Functional ingredients from algae for foods and nutraceuticals. Woodhead Publishing, Cambridge, pp 23–86

    Chapter  Google Scholar 

  • Vanegas CH, Hernon A, Bartlett J (2015) Enzymatic and organic acid pretreatment of seaweed: effect on reducing sugars production and on biogas inhibition. Int J Ambient Energ 36:2–7

    Article  CAS  Google Scholar 

  • Wal H, Sperber BLHM, Houweling-Tan B, Bakker RRC, Brandenburg W, López-Contreras AM (2013) Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. Bioresour Technol 128:431–437

    Article  PubMed  CAS  Google Scholar 

  • Wang HMD, Chen CC, Huynh P, Chang JS (2014) Exploring the potential of using algae in cosmetics. Bioresour Technol. doi:10.1016/j.biortech.2014.12.001 (In press)

    Google Scholar 

  • Wei N, Quarterman J, Jin Y (2013) Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends Biotechnol 31:70–77

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Kim JY, Oh YR, Park JM (2014) Production of biodiesel from carbon sources of macroalgae, Laminaria japonica. Bioresour Technol 169:455–461

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Duan P, Wang F (2015) Hydrothermal processing of macroalgae for producing crude bio-oil. Fuel Process Technol 130:268–274

    Article  CAS  Google Scholar 

  • Yanagisawa M, Kawai S, Murata K (2013) Strategies for the production of high concentrations of bioethanol from seaweeds. Bioengineered 4:224–235

    Article  PubMed Central  PubMed  Google Scholar 

  • Yazdani P, Zamani A, Karimi K, Taherzadeh MJ (2015) Characterization of Nizimuddinia zanardini macroalgae biomass composition and its potential for biofuel production. Bioresour Technol 176:196–202

    Article  CAS  PubMed  Google Scholar 

  • Yeon JH, Lee SE, Choi WY, Kang DH, Lee HY, Jung KH (2011) Repeated-batch operation of surface-aerated fermentor for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum. J Microbiol Biotechnol 21:323–331

    CAS  PubMed  Google Scholar 

  • Zafar M, Chowdhury SMRA (2009) Water quality and biochemical components of Hydroclathrus clathratus in the Tidal shore area of St. Martin’s Island, Bangladesh. Int J Phycol Phycochem 5:7–10

    CAS  Google Scholar 

  • Zhang B, Keitz MV, Valentas K (2008) Thermal effects on hydrothermal biomass liquefaction. Appl Biochem Biotechnol 147:143–150

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Shahbazi A, Wang L, Diallo O, Whitmore A (2011) Hot-water pretreatment of cattails for extraction of cellulose. J Ind Microbiol Biotechnol 38:819–824

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53

    Article  Google Scholar 

  • Zhou D, Zhang L, Zhang S, Fu H, Chen J (2010) Hydrothermal liquefaction of macroalgae Enteromorpha prolifera to bio-oil. Energ Fuel 24:4054–4061

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor A. Ruiz .

Editor information

Editors and Affiliations

List of Abbreviations

List of Abbreviations

EJ:

Exajoule

HL:

Hydrothermal liquefaction

HTT:

Hydrothermal pretreatments

Log (R 0 ):

Severity factor

VS:

Volatile Solids

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ruiz, H.A., Rodríguez-Jasso, R.M., Aguedo, M., Kádár, Z. (2015). Hydrothermal Pretreatments of Macroalgal Biomass for Biorefineries. In: Prokop, A., Bajpai, R., Zappi, M. (eds) Algal Biorefineries. Springer, Cham. https://doi.org/10.1007/978-3-319-20200-6_15

Download citation

Publish with us

Policies and ethics