Skip to main content

2015 | OriginalPaper | Buchkapitel

6. Scale-up Problems for the Large Scale Production of Algae

verfasst von : Teresa Lopes da Silva, Alberto Reis

Erschienen in: Algal Biorefinery: An Integrated Approach

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Microalgae are a natural source of high-value compounds for pharmaceutical and food industry and can also be a source of biofuels. Usually naturally occurring algae live completely submerged in aquatic environments, as low density cellular suspension. To have significant social, environmental and economic impact on human society, algae must be grown in large scale systems, in order to significantly increase the production volume. The objective of a process scale-up is to enlarge the production quantities with similar or higher productivity and product quality.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abeliovich, A. and Shilo, M. (1972). Photooxidative death in blue-green algae. J. Bacteriol. 111(3), 682–689. Abeliovich, A. and Shilo, M. (1972). Photooxidative death in blue-green algae. J. Bacteriol. 111(3), 682–689.
Zurück zum Zitat Anning, T., Harris, G., & Geider, R. (2001). Thermal acclimation in the marine diatom Chaetoceros calcitrans (Bacillariophyceae). European Journal of Phycology, 36(3), 233–241.CrossRef Anning, T., Harris, G., & Geider, R. (2001). Thermal acclimation in the marine diatom Chaetoceros calcitrans (Bacillariophyceae). European Journal of Phycology, 36(3), 233–241.CrossRef
Zurück zum Zitat Barbosa, M., Albrecht, M. and Wijffels, R. (2003). Hydrodynamic stress and lethal events in sparged microalgae culture. Biotechnol Bioeng, 25, 112–120.CrossRef Barbosa, M., Albrecht, M. and Wijffels, R. (2003). Hydrodynamic stress and lethal events in sparged microalgae culture. Biotechnol Bioeng, 25, 112–120.CrossRef
Zurück zum Zitat Barbosa, M.J., Hadiyanto and Wijffels, R.H. (2004). Overcoming Shear Stress of Microalgae Cultures in Sparged Photobioreactors. Biotechnology and Bioengineering, 85(1), 78–85. Barbosa, M.J., Hadiyanto and Wijffels, R.H. (2004). Overcoming Shear Stress of Microalgae Cultures in Sparged Photobioreactors. Biotechnology and Bioengineering, 85(1), 78–85.
Zurück zum Zitat Blaas, H. and Kroeze, C. (2014). Possible future effects of large-scale algae cultivation for biofuels on coastal eutrophication in Europe. Science of the Total Environment, 496, 45–53.CrossRef Blaas, H. and Kroeze, C. (2014). Possible future effects of large-scale algae cultivation for biofuels on coastal eutrophication in Europe. Science of the Total Environment, 496, 45–53.CrossRef
Zurück zum Zitat Camacho, F.G., Rodríguez, J.J., Mirón, A.S., Belarbi, E.H., Chisti, Y. and Grima, E.M. (2011). Photobioreactor scale-up for a shear-sensitive dinoflagellate microalga. Process Biochem., 46, 936–944.CrossRef Camacho, F.G., Rodríguez, J.J., Mirón, A.S., Belarbi, E.H., Chisti, Y. and Grima, E.M. (2011). Photobioreactor scale-up for a shear-sensitive dinoflagellate microalga. Process Biochem., 46, 936–944.CrossRef
Zurück zum Zitat Chopra, M. (2004). Scale-up in biochemical processes. PharmaChem, Biotechnology, January-February 2004, 48–53. Chopra, M. (2004). Scale-up in biochemical processes. PharmaChem, Biotechnology, January-February 2004, 48–53.
Zurück zum Zitat Davison, I. R. (1991). Environmental effects on algal photosynthesis: temperature. Journal of phycology, 27(1), 2–8.CrossRef Davison, I. R. (1991). Environmental effects on algal photosynthesis: temperature. Journal of phycology, 27(1), 2–8.CrossRef
Zurück zum Zitat Emeka, U., Ndukwe, G.I., Mustapha, K.G. and Ayo, R.I. (2012). Constrains to large scale algal biomass production and utilization. J. Algal Biomass Utln., 3, 14–21. Emeka, U., Ndukwe, G.I., Mustapha, K.G. and Ayo, R.I. (2012). Constrains to large scale algal biomass production and utilization. J. Algal Biomass Utln., 3, 14–21.
Zurück zum Zitat Enfors, S.-O., Jahic, M., Rozkov, A., Xu, B., Hecker, M., Jürgen, B., Kruger, E., Scheweder, T., Hamer, G., O’Beirne, D., Noisommit-Rizzi, N., Reuss, M., Boone, L., Hewitt, C., McFarlane, C., Nienow, A., Kovacs, T., Trägard, C., Fuchs, L., Revstedt, J., Friberg, P.C., Hjertager, B., Blomsten, G., Skogman, H., Hjort, S., Hoeks, F., Lin, H.-Y., Neubauer, P. van der Lans R., Luyben, K., Vrabel, P. and Manelius, A. (2001). Physiological responses to mixing in large scale bioreactors. J. Biotechnol., 85, 175–185. Enfors, S.-O., Jahic, M., Rozkov, A., Xu, B., Hecker, M., Jürgen, B., Kruger, E., Scheweder, T., Hamer, G., O’Beirne, D., Noisommit-Rizzi, N., Reuss, M., Boone, L., Hewitt, C., McFarlane, C., Nienow, A., Kovacs, T., Trägard, C., Fuchs, L., Revstedt, J., Friberg, P.C., Hjertager, B., Blomsten, G., Skogman, H., Hjort, S., Hoeks, F., Lin, H.-Y., Neubauer, P. van der Lans R., Luyben, K., Vrabel, P. and Manelius, A. (2001). Physiological responses to mixing in large scale bioreactors. J. Biotechnol., 85, 175–185.
Zurück zum Zitat Falkowski PG and Raven J (1997) Aquatic Photosynthesis. Blackwell Science, Oxford Falkowski PG and Raven J (1997) Aquatic Photosynthesis. Blackwell Science, Oxford
Zurück zum Zitat Gallardo-Rodríguez, J.J., García-Camacho, F., Sánchez-Mirón, A., López-Rosales, L., Chisti, Y. and Molina-Grima, E. (2011). Shear-Induced Changes in Membrane Fluidity During Culture of a Fragile Dinoflagellate Microalga. Biotechnol. Prog., 28(2), 467–473.CrossRef Gallardo-Rodríguez, J.J., García-Camacho, F., Sánchez-Mirón, A., López-Rosales, L., Chisti, Y. and Molina-Grima, E. (2011). Shear-Induced Changes in Membrane Fluidity During Culture of a Fragile Dinoflagellate Microalga. Biotechnol. Prog., 28(2), 467–473.CrossRef
Zurück zum Zitat Gouveia, L., Marques, A., Lopes da Silva, T. and Reis, A. (2009). Neochloris oleabundans UTEX # 1185: A suitable renewable lipid source for biofuel production. J. Ind. Microbiol. Biotechnol., 36, 821–826. Gouveia, L., Marques, A., Lopes da Silva, T. and Reis, A. (2009). Neochloris oleabundans UTEX # 1185: A suitable renewable lipid source for biofuel production. J. Ind. Microbiol. Biotechnol., 36, 821–826.
Zurück zum Zitat Griffiths, M.J. (2013). Microalgal Cultivation Reactor Systems. In: Biotechnological Applications of Microalgae. Chapter 5, Faizal Bux (ed). CRC Press, pp. 51–76. Griffiths, M.J. (2013). Microalgal Cultivation Reactor Systems. In: Biotechnological Applications of Microalgae. Chapter 5, Faizal Bux (ed). CRC Press, pp. 51–76.
Zurück zum Zitat Grobbelaar, J.U. (2009). From laboratory to commercial production: A case study of a Spirulina (Arthrospira) facility in Musina, South Africa. J. Appl. Phycol., 21, 523–527.CrossRef Grobbelaar, J.U. (2009). From laboratory to commercial production: A case study of a Spirulina (Arthrospira) facility in Musina, South Africa. J. Appl. Phycol., 21, 523–527.CrossRef
Zurück zum Zitat Gudin, C. and Chaumont, D. (1991). Cell Fragility - The Key Problem of Microalgae Mass Production in Closed Photobioreactors. Bioresour. Technol., 38, 145–151.CrossRef Gudin, C. and Chaumont, D. (1991). Cell Fragility - The Key Problem of Microalgae Mass Production in Closed Photobioreactors. Bioresour. Technol., 38, 145–151.CrossRef
Zurück zum Zitat Harrison, W. G., & Platt, T. (1986). Photosynthesis-irradiance relationships in polar and temperate phytoplankton populations. Polar biology, 5(3), 153–164.CrossRef Harrison, W. G., & Platt, T. (1986). Photosynthesis-irradiance relationships in polar and temperate phytoplankton populations. Polar biology, 5(3), 153–164.CrossRef
Zurück zum Zitat Hinze, J. O. (1955). Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE Journal, 1(3), 289–295.CrossRef Hinze, J. O. (1955). Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE Journal, 1(3), 289–295.CrossRef
Zurück zum Zitat Hsu, Y. and Wu, W. (2002). A novel approach for scaling-up a fermentation system. Biochem. Eng. J., 11, 123–130.CrossRef Hsu, Y. and Wu, W. (2002). A novel approach for scaling-up a fermentation system. Biochem. Eng. J., 11, 123–130.CrossRef
Zurück zum Zitat Hyka, P., Lickova, S., Tribyl, P., Melzoch, K. and Kpvar, K. (2012). Flow cytometry for the development of biotechnological processes with microalgae. Biotechnol Adv., 31, 2–16.CrossRef Hyka, P., Lickova, S., Tribyl, P., Melzoch, K. and Kpvar, K. (2012). Flow cytometry for the development of biotechnological processes with microalgae. Biotechnol Adv., 31, 2–16.CrossRef
Zurück zum Zitat Jaouen, P., Vandanjon, L. and Quéméneur, F. (1999). The shear stress of microalgal cell suspensions (Tetraselmis suecica) in tangential flow filtration systems: The role of pumps. Bioresour. Technol., 68, 149–154.CrossRef Jaouen, P., Vandanjon, L. and Quéméneur, F. (1999). The shear stress of microalgal cell suspensions (Tetraselmis suecica) in tangential flow filtration systems: The role of pumps. Bioresour. Technol., 68, 149–154.CrossRef
Zurück zum Zitat Kolmogorov, A. N. (1949). On the disintegration of drops in a turbulent flow. In Dokl. Akad. Nauk SSSR (Vol. 66, No. 825–828, p. 30). Kolmogorov, A. N. (1949). On the disintegration of drops in a turbulent flow. In Dokl. Akad. Nauk SSSR (Vol. 66, No. 825–828, p. 30).
Zurück zum Zitat Kossen, N.W.F. and Oosterhuis, N.M.G. (1992). Modelling and Scaling-up of Bioreactors. In: Rehm, H.-J. and Reed, G. (eds), Biotechnology. 1st ed., Vol. 2, pp 571–605. Kossen, N.W.F. and Oosterhuis, N.M.G. (1992). Modelling and Scaling-up of Bioreactors. In: Rehm, H.-J. and Reed, G. (eds), Biotechnology. 1st ed., Vol. 2, pp 571–605.
Zurück zum Zitat Li, X., Xu, H. and Wu, Q. (2007). Large-Scale Biodiesel Production from Microalga Chlorella protothecoides Through Heterotrophic Cultivation in Bioreactors. Biotechnology and Bioengineering, 98(4), 764–771.CrossRef Li, X., Xu, H. and Wu, Q. (2007). Large-Scale Biodiesel Production from Microalga Chlorella protothecoides Through Heterotrophic Cultivation in Bioreactors. Biotechnology and Bioengineering, 98(4), 764–771.CrossRef
Zurück zum Zitat Lopes da Silva, T., Santos, C. and Reis, A. (2009a). Multi-parameter flow cytometry as a tool to monitor heterotrophic microalgal batch fermentations for oil production towards biodiesel. Biotechnol. Bioproc. Eng., 14, 330–337. Lopes da Silva, T., Santos, C. and Reis, A. (2009a). Multi-parameter flow cytometry as a tool to monitor heterotrophic microalgal batch fermentations for oil production towards biodiesel. Biotechnol. Bioproc. Eng., 14, 330–337.
Zurück zum Zitat Lopes da Silva, T., Reis, A., Medeiros, R., Oliveira, C. and Gouveia, L. (2009b). Oil production towards biofuel from autotrophic microalgae semi-continuous cultivations by flow cytometry. Appl. Biochem. Biotechnol., 159, 568–578.CrossRef Lopes da Silva, T., Reis, A., Medeiros, R., Oliveira, C. and Gouveia, L. (2009b). Oil production towards biofuel from autotrophic microalgae semi-continuous cultivations by flow cytometry. Appl. Biochem. Biotechnol., 159, 568–578.CrossRef
Zurück zum Zitat Mirón, A.S., Gómez, A.C., Camacho, F.G., Grima, E.M. and Chisti, Y. (1999). Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol., 70, 249–270.CrossRef Mirón, A.S., Gómez, A.C., Camacho, F.G., Grima, E.M. and Chisti, Y. (1999). Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol., 70, 249–270.CrossRef
Zurück zum Zitat Molina Grima, E. (1999). Photobioreactors: Light regime, mass transfer, and scale-up. Journal of Biotechnology, 70, 231–247.CrossRef Molina Grima, E. (1999). Photobioreactors: Light regime, mass transfer, and scale-up. Journal of Biotechnology, 70, 231–247.CrossRef
Zurück zum Zitat Molina, E., Fernández, J. Acién, F.G. and Chisti, Y. (2001). Tubular photobioreactor design for algal cultures. Journal of Biotechnology, 92, 113–131.CrossRef Molina, E., Fernández, J. Acién, F.G. and Chisti, Y. (2001). Tubular photobioreactor design for algal cultures. Journal of Biotechnology, 92, 113–131.CrossRef
Zurück zum Zitat Oncel, S. and Sabankay, M. (2012). Microalgal biohydrogen production considering light energy and mixing time as the two key features for scale-up. Bioresource Technology, 121, 228–234.CrossRef Oncel, S. and Sabankay, M. (2012). Microalgal biohydrogen production considering light energy and mixing time as the two key features for scale-up. Bioresource Technology, 121, 228–234.CrossRef
Zurück zum Zitat Passell, H., Dhaliwal, H., Reno, M., Wu, B., Ben Amotz, A., Ivry, E., Gay, M., Czartoski, T., Laurin, L. and Ayer, N. (2013). Algae biodiesel life cycle assessment using current commercial data. Journal of Environmental Management, 129, 103–111.CrossRef Passell, H., Dhaliwal, H., Reno, M., Wu, B., Ben Amotz, A., Ivry, E., Gay, M., Czartoski, T., Laurin, L. and Ayer, N. (2013). Algae biodiesel life cycle assessment using current commercial data. Journal of Environmental Management, 129, 103–111.CrossRef
Zurück zum Zitat Pate, R., Klise, G. and Wub, B. (2011). Resource demand implications for US algae biofuels production scale-up. Applied Energy, 88, 3377–3388.CrossRef Pate, R., Klise, G. and Wub, B. (2011). Resource demand implications for US algae biofuels production scale-up. Applied Energy, 88, 3377–3388.CrossRef
Zurück zum Zitat Qu, L., Ren, L.-J. and Huang, H. (2013). Scale-up of docosahexaenoic acid production in fed-batch fermentation by Schizochytrium sp. based on volumetric oxygen-transfer coefficient. Biochemical Engineering Journal, 77, 82–87.CrossRef Qu, L., Ren, L.-J. and Huang, H. (2013). Scale-up of docosahexaenoic acid production in fed-batch fermentation by Schizochytrium sp. based on volumetric oxygen-transfer coefficient. Biochemical Engineering Journal, 77, 82–87.CrossRef
Zurück zum Zitat Ramírez-Duque, J.L., Marín-Quintero, D.A. and García-Pulido, C.H. (2012). Evaluation of Microalgal Mortality in a Centrifugal Pump of a Tubular Photobioreactor. Ing. Univ. SciELO. (Colombia), 16(2), 333–347. Ramírez-Duque, J.L., Marín-Quintero, D.A. and García-Pulido, C.H. (2012). Evaluation of Microalgal Mortality in a Centrifugal Pump of a Tubular Photobioreactor. Ing. Univ. SciELO. (Colombia), 16(2), 333–347.
Zurück zum Zitat Rawat, I., Ranjith Kumar, R., Mutanda, T.F. and Bux, F. (2013). Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Applied Energy, 103, 444–467.CrossRef Rawat, I., Ranjith Kumar, R., Mutanda, T.F. and Bux, F. (2013). Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Applied Energy, 103, 444–467.CrossRef
Zurück zum Zitat Ren, J., Han, P., Wei, H. and Jia, L. (2014). Fouling-resistant behavior of silver nanoparticle-modified surfaces against the bioadhesion of microalgae. ACS Appl Mater Interfaces, 6(6), 3829–3838.CrossRef Ren, J., Han, P., Wei, H. and Jia, L. (2014). Fouling-resistant behavior of silver nanoparticle-modified surfaces against the bioadhesion of microalgae. ACS Appl Mater Interfaces, 6(6), 3829–3838.CrossRef
Zurück zum Zitat Richmond, A. (1986). Outdoor mass cultures of microalgae. In: A. Richmond (ed.), Handbook of Microalgal Mass Culture. CRC Press. Boca Raton, pp. 285–330. Richmond, A. (1986). Outdoor mass cultures of microalgae. In: A. Richmond (ed.), Handbook of Microalgal Mass Culture. CRC Press. Boca Raton, pp. 285–330.
Zurück zum Zitat Rodríguez, J.J., Mirón, A.S.A., Camacho, F., Garcia, M. and Belarbi, E. (2009). Causes of Shear Sensitivity of the Toxic Dinoflagellate Protoceratium reticulatum. Biotechnol. Prog., 25, 792–800.CrossRef Rodríguez, J.J., Mirón, A.S.A., Camacho, F., Garcia, M. and Belarbi, E. (2009). Causes of Shear Sensitivity of the Toxic Dinoflagellate Protoceratium reticulatum. Biotechnol. Prog., 25, 792–800.CrossRef
Zurück zum Zitat Salleh, S., McMinn, A., Mohammad, M., Yasin, Z. and Tan, S.H.A. (2010). Effects of Temperature on the Photosynthetic Parameters of Antarctic Benthic Microalgal Community. ASM Sci. J., 4(1), 81–88. Salleh, S., McMinn, A., Mohammad, M., Yasin, Z. and Tan, S.H.A. (2010). Effects of Temperature on the Photosynthetic Parameters of Antarctic Benthic Microalgal Community. ASM Sci. J., 4(1), 81–88.
Zurück zum Zitat Shuler, F.L. and Kargi, F. (1992). Bioprocess Engineering: Basic concepts. 2nd ed, Prentice-Hall, Englewood Cliffs, NJ. Shuler, F.L. and Kargi, F. (1992). Bioprocess Engineering: Basic concepts. 2nd ed, Prentice-Hall, Englewood Cliffs, NJ.
Zurück zum Zitat Soeder, C.J. (1980). Massive cultivation of microalgae: Results and prospects. Hydrobiologia, 72, 197–209.CrossRef Soeder, C.J. (1980). Massive cultivation of microalgae: Results and prospects. Hydrobiologia, 72, 197–209.CrossRef
Zurück zum Zitat Tabernero, A., Martín del Valle, E.M. and Galán, M.A. (2012). Evaluating the industrial potential of biodiesel from a microalgae heterotrophic culture: Scale-up and economics. Biochemical Engineering Journal, 63, 104–115.CrossRef Tabernero, A., Martín del Valle, E.M. and Galán, M.A. (2012). Evaluating the industrial potential of biodiesel from a microalgae heterotrophic culture: Scale-up and economics. Biochemical Engineering Journal, 63, 104–115.CrossRef
Zurück zum Zitat Taylor, B., Xiao, N., Sikorski, Yong, M., Harris, T., Helme, T., Smallbone, A., Bhave, A. and Kraft, M. (2013). Techno-economic assessment of carbon-negative algal biodiesel for transport solutions. Applied Energy, 106, 262–274. Taylor, B., Xiao, N., Sikorski, Yong, M., Harris, T., Helme, T., Smallbone, A., Bhave, A. and Kraft, M. (2013). Techno-economic assessment of carbon-negative algal biodiesel for transport solutions. Applied Energy, 106, 262–274.
Zurück zum Zitat Thiry, M. and Cingolani, D. (2002). Optimizing scale-up fermentation processes. Trends in Biotechnology, 20(3), 33–35.CrossRef Thiry, M. and Cingolani, D. (2002). Optimizing scale-up fermentation processes. Trends in Biotechnology, 20(3), 33–35.CrossRef
Zurück zum Zitat Tredici, M.R. (1999). Bioreactors, Photo. In: Flickinger, M.C. and Drew, S.W. (eds), Encyclopedia of Bioprocess Technology: Fermentation, biocatalysis, and bioseparation. ISBN 0-471-13822-3. John Wiley & Sons, Inc. pp. 364–419. Tredici, M.R. (1999). Bioreactors, Photo. In: Flickinger, M.C. and Drew, S.W. (eds), Encyclopedia of Bioprocess Technology: Fermentation, biocatalysis, and bioseparation. ISBN 0-471-13822-3. John Wiley & Sons, Inc. pp. 364–419.
Zurück zum Zitat Wang, S-K., Hua, Y-R., Wang, F., Stiles, A.R. and Liu, C.-Z. (2014). Scale-up cultivation of Chlorella ellipsoidea from indoor to outdoor in bubble column bioreactors. Bioresource Technology, 156, 117–122.CrossRef Wang, S-K., Hua, Y-R., Wang, F., Stiles, A.R. and Liu, C.-Z. (2014). Scale-up cultivation of Chlorella ellipsoidea from indoor to outdoor in bubble column bioreactors. Bioresource Technology, 156, 117–122.CrossRef
Metadaten
Titel
Scale-up Problems for the Large Scale Production of Algae
verfasst von
Teresa Lopes da Silva
Alberto Reis
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-22813-6_6